R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]
P.-Y. Chen and A. Alú, “Dual-mode miniaturized elliptical patch antenna with mu-negative metamaterials,” Antennas Wirel. Propag. Lett. IEEE 9, 351–354 (2010).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]
S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]
K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]
[PubMed]
K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]
[PubMed]
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]
M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]
A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]
[PubMed]
C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14, 105029 (2012).
[Crossref]
R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]
[PubMed]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
D. J. Yeh and E. R. Brown, “New design for increased terahertz power from ltg gaas photomixers,” Proc. SPIE 4111, 124–132 (2000).
[Crossref]
E. R. Brown, “A photoconductive model for superior gaas thz photomixers,” Appl. Phys. Lett. 75, 769–771 (1999).
[Crossref]
S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]
E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]
E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]
T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity,
broadband waveguide uni-travelling carrier
photodiode,” Proc. SPIE 6194, 61940C (2006).
M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
[Crossref]
J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]
P.-Y. Chen and A. Alú, “Dual-mode miniaturized elliptical patch antenna with mu-negative metamaterials,” Antennas Wirel. Propag. Lett. IEEE 9, 351–354 (2010).
[Crossref]
K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]
A. Krotkus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol. 20, S142 (2005).
[Crossref]
J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]
M. Feiginov, “Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators,” Appl. Phys. Lett. 107, 123504 (2015).
[Crossref]
K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]
[PubMed]
C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity,
broadband waveguide uni-travelling carrier
photodiode,” Proc. SPIE 6194, 61940C (2006).
C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]
F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]
H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]
H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref]
[PubMed]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]
T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]
A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]
C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]
R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
K. Güney, “Radiation quality factor and resonant resistance of rectangular microstrip antennas,” Microw. Opt. Technol. Lett. 7, 427–430 (1994).
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]
A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Incorporated, 2005).
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]
[PubMed]
H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]
H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]
J. Holman, Heat Transfer (McGraw-Hill Education, 2009).
N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]
A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]
C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]
J. P. Ibbetson and U. K. Mishra, “Space-charge-limited currents in nonstoichiometric gaas,” Appl. Phys. Lett. 68, 3781–3783 (1996).
[Crossref]
H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]
F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]
F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]
H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]
H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]
S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]
A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]
A. W. Jackson, “Low-temperature-grown gaas photomixers designed for increased terahertz output power,” Ph.D. disseration, University of California, Santa Barbara, CA (1999).
A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on gaas plasmonic photomixers,” Appl. Phys. Lett. 107, 131111 (2015).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]
[PubMed]
C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14, 105029 (2012).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]
A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]
A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]
C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]
R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref]
[PubMed]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref]
[PubMed]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
A. Krotkus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol. 20, S142 (2005).
[Crossref]
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]
E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]
T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]
R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref]
[PubMed]
A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
J. Manley and H. Rowe, “Some general properties of nonlinear elements part i. general energy relations,” in Proceedings of the IRE (IEEE, 1956) 44, 904–913.
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]
R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]
S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]
N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]
S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]
E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]
E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]
J. P. Ibbetson and U. K. Mishra, “Space-charge-limited currents in nonstoichiometric gaas,” Appl. Phys. Lett. 68, 3781–3783 (1996).
[Crossref]
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity,
broadband waveguide uni-travelling carrier
photodiode,” Proc. SPIE 6194, 61940C (2006).
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]
M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]
F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]
F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]
H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]
E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]
K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]
K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]
A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]
T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
D. L. Powers, Boundary Value Problems and Partial Differential Equations: Student Solutions Manual (Elsevier Academic Press, 2005).
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]
C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity,
broadband waveguide uni-travelling carrier
photodiode,” Proc. SPIE 6194, 61940C (2006).
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity,
broadband waveguide uni-travelling carrier
photodiode,” Proc. SPIE 6194, 61940C (2006).
C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity,
broadband waveguide uni-travelling carrier
photodiode,” Proc. SPIE 6194, 61940C (2006).
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]
J. Manley and H. Rowe, “Some general properties of nonlinear elements part i. general energy relations,” in Proceedings of the IRE (IEEE, 1956) 44, 904–913.
[Crossref]
M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]
A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]
T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity,
broadband waveguide uni-travelling carrier
photodiode,” Proc. SPIE 6194, 61940C (2006).
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref]
[PubMed]
J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
[Crossref]
E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]
H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]
T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref]
[PubMed]
A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]
S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]
K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]
S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]
A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Incorporated, 2005).
K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]
S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]
M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[Crossref]
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]
[PubMed]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]
S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]
N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]
S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]
[PubMed]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]
S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on gaas plasmonic photomixers,” Appl. Phys. Lett. 107, 131111 (2015).
[Crossref]
F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]
D. J. Yeh and E. R. Brown, “New design for increased terahertz power from ltg gaas photomixers,” Proc. SPIE 4111, 124–132 (2000).
[Crossref]
S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]
H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]
N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]
J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]
X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Medicine Biol. 47, 3667 (2002).
[Crossref]
P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25, 242–244 (2000).
[Crossref]
F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref]
[PubMed]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]
P.-Y. Chen and A. Alú, “Dual-mode miniaturized elliptical patch antenna with mu-negative metamaterials,” Antennas Wirel. Propag. Lett. IEEE 9, 351–354 (2010).
[Crossref]
J. P. Ibbetson and U. K. Mishra, “Space-charge-limited currents in nonstoichiometric gaas,” Appl. Phys. Lett. 68, 3781–3783 (1996).
[Crossref]
N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]
S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]
E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]
A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]
S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]
E. R. Brown, “A photoconductive model for superior gaas thz photomixers,” Appl. Phys. Lett. 75, 769–771 (1999).
[Crossref]
C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]
E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]
M. Feiginov, “Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators,” Appl. Phys. Lett. 107, 123504 (2015).
[Crossref]
S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]
S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on gaas plasmonic photomixers,” Appl. Phys. Lett. 107, 131111 (2015).
[Crossref]
A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]
F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]
H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]
F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]
P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]
K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]
F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]
S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]
P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
[Crossref]
K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]
E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]
E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]
M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]
T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]
A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]
K. Güney, “Radiation quality factor and resonant resistance of rectangular microstrip antennas,” Microw. Opt. Technol. Lett. 7, 427–430 (1994).
[Crossref]
K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]
[PubMed]
K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]
[PubMed]
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]
[PubMed]
J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]
M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[Crossref]
C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14, 105029 (2012).
[Crossref]
X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Medicine Biol. 47, 3667 (2002).
[Crossref]
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref]
[PubMed]
J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]
M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
[Crossref]
C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity,
broadband waveguide uni-travelling carrier
photodiode,” Proc. SPIE 6194, 61940C (2006).
R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]
D. J. Yeh and E. R. Brown, “New design for increased terahertz power from ltg gaas photomixers,” Proc. SPIE 4111, 124–132 (2000).
[Crossref]
H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]
I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]
A. Krotkus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol. 20, S142 (2005).
[Crossref]
G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]
R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
J. Manley and H. Rowe, “Some general properties of nonlinear elements part i. general energy relations,” in Proceedings of the IRE (IEEE, 1956) 44, 904–913.
[Crossref]
A. W. Jackson, “Low-temperature-grown gaas photomixers designed for increased terahertz output power,” Ph.D. disseration, University of California, Santa Barbara, CA (1999).
A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Incorporated, 2005).
D. L. Powers, Boundary Value Problems and Partial Differential Equations: Student Solutions Manual (Elsevier Academic Press, 2005).
J. Holman, Heat Transfer (McGraw-Hill Education, 2009).
H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]