Abstract

We show that perfect absorption of incoherent light is possible in a semi-infinite slab of anisotropic dielectric even in the presence of loss. The operating frequency of the proposed system is free of any dependence on physical dimensions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Anomalies in light scattering

Alex Krasnok, Denis Baranov, Huanan Li, Mohammad-Ali Miri, Francesco Monticone, and Andrea Alú
Adv. Opt. Photon. 11(4) 892-951 (2019)

Electromagnetic inhomogeneous waves at planar boundaries: tutorial

Fabrizio Frezza and Nicola Tedeschi
J. Opt. Soc. Am. A 32(8) 1485-1501 (2015)

Negative refraction in indefinite media

David R. Smith, Pavel Kolinko, and David Schurig
J. Opt. Soc. Am. B 21(5) 1032-1043 (2004)

References

  • View by:
  • |
  • |
  • |

  1. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  2. V. Petrov and V. Gagulin, “Microwave absorbing materials,” Inorg. Mater. 37, 93–98 (2001).
    [Crossref]
  3. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  4. Y. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref] [PubMed]
  5. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [Crossref] [PubMed]
  6. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
    [Crossref] [PubMed]
  7. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
    [Crossref]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2018).
    [Crossref]
  9. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
    [Crossref] [PubMed]
  10. D. Baranov, A. Vinogradov, and C. Simovski, “Perfect absorption at Zenneck wave to plane wave transition,” Metamaterials 6, 70–75 (2012).
    [Crossref]
  11. Z. Wang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials,” Opt. Commun. 284, 2678–2682 (2011).
    [Crossref]
  12. M. Khalid, N. Tedeschi, and F. Frezza, “Analysis of reflection from a novel anisotropic lossy medium characterized by particular material properties,” J. Electromagnet. Wave. 31, 798–807 (2017).
    [Crossref]
  13. D. Baranov, J. Edgar, T. Hoffman, N. Bassim, and J. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B 92, 201405 (2015).
    [Crossref]
  14. C. A. Balanis, Antenna theory: analysis and design (Wiley-Interscience; 3rd edition, 2005).
  15. M. Tschikin, S.-A. Biehs, R. Messina, and P. Ben-Abdallah, “On the limits of the effective description of hyperbolic materials in the presence of surface waves,” J. Opt. 15, 105101 (2013).
    [Crossref]
  16. H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
    [Crossref] [PubMed]
  17. M. Schubert, T. Tiwald, and C. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187 (2000).
    [Crossref]
  18. S. Vangala, G. Siegel, T. Prusnick, and M. Snure, “Wafer scale BN on sapphire substrates for improved graphene transport,” Sci. Rep. 8, 8842 (2018).
    [Crossref] [PubMed]
  19. M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
    [Crossref]
  20. D. Brewster, “On the laws which regulate the polarisation of light by reflexion from transparent bodies,” Philos. Trans. R. Soc. Lond. 105, 125–159 (1815).
  21. A. V. Kukushkin, A. A. Rukhadze, and K. Rukhadze, “On the existence conditions for a fast surface wave,” Phys.-Uspekhi 55, 1124 (2012).
    [Crossref]
  22. A. B. Djurišić and E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
    [Crossref]

2018 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2018).
[Crossref]

S. Vangala, G. Siegel, T. Prusnick, and M. Snure, “Wafer scale BN on sapphire substrates for improved graphene transport,” Sci. Rep. 8, 8842 (2018).
[Crossref] [PubMed]

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

2017 (2)

H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
[Crossref] [PubMed]

M. Khalid, N. Tedeschi, and F. Frezza, “Analysis of reflection from a novel anisotropic lossy medium characterized by particular material properties,” J. Electromagnet. Wave. 31, 798–807 (2017).
[Crossref]

2015 (1)

D. Baranov, J. Edgar, T. Hoffman, N. Bassim, and J. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B 92, 201405 (2015).
[Crossref]

2014 (1)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref] [PubMed]

2013 (1)

M. Tschikin, S.-A. Biehs, R. Messina, and P. Ben-Abdallah, “On the limits of the effective description of hyperbolic materials in the presence of surface waves,” J. Opt. 15, 105101 (2013).
[Crossref]

2012 (2)

D. Baranov, A. Vinogradov, and C. Simovski, “Perfect absorption at Zenneck wave to plane wave transition,” Metamaterials 6, 70–75 (2012).
[Crossref]

A. V. Kukushkin, A. A. Rukhadze, and K. Rukhadze, “On the existence conditions for a fast surface wave,” Phys.-Uspekhi 55, 1124 (2012).
[Crossref]

2011 (4)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Z. Wang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials,” Opt. Commun. 284, 2678–2682 (2011).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

2005 (1)

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

2001 (1)

V. Petrov and V. Gagulin, “Microwave absorbing materials,” Inorg. Mater. 37, 93–98 (2001).
[Crossref]

2000 (1)

M. Schubert, T. Tiwald, and C. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187 (2000).
[Crossref]

1999 (1)

A. B. Djurišić and E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
[Crossref]

1815 (1)

D. Brewster, “On the laws which regulate the polarisation of light by reflexion from transparent bodies,” Philos. Trans. R. Soc. Lond. 105, 125–159 (1815).

Aizpurua, J.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Alfaro-Mozaz, F. J.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Alonso-González, P.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Atxabal, A.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Autore, M.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Balanis, C. A.

C. A. Balanis, Antenna theory: analysis and design (Wiley-Interscience; 3rd edition, 2005).

Baranov, D.

D. Baranov, J. Edgar, T. Hoffman, N. Bassim, and J. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B 92, 201405 (2015).
[Crossref]

D. Baranov, A. Vinogradov, and C. Simovski, “Perfect absorption at Zenneck wave to plane wave transition,” Metamaterials 6, 70–75 (2012).
[Crossref]

Bassim, N.

D. Baranov, J. Edgar, T. Hoffman, N. Bassim, and J. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B 92, 201405 (2015).
[Crossref]

Ben-Abdallah, P.

M. Tschikin, S.-A. Biehs, R. Messina, and P. Ben-Abdallah, “On the limits of the effective description of hyperbolic materials in the presence of surface waves,” J. Opt. 15, 105101 (2013).
[Crossref]

Biehs, S.-A.

M. Tschikin, S.-A. Biehs, R. Messina, and P. Ben-Abdallah, “On the limits of the effective description of hyperbolic materials in the presence of surface waves,” J. Opt. 15, 105101 (2013).
[Crossref]

Brewster, D.

D. Brewster, “On the laws which regulate the polarisation of light by reflexion from transparent bodies,” Philos. Trans. R. Soc. Lond. 105, 125–159 (1815).

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Caldwell, J.

D. Baranov, J. Edgar, T. Hoffman, N. Bassim, and J. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B 92, 201405 (2015).
[Crossref]

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Casanova, F.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Celanovic, I.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Choi, Y.

H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
[Crossref] [PubMed]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Djurišic, A. B.

A. B. Djurišić and E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
[Crossref]

Dolado, I.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Edgar, J.

D. Baranov, J. Edgar, T. Hoffman, N. Bassim, and J. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B 92, 201405 (2015).
[Crossref]

Esteban, R.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Feng, Y.

Z. Wang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials,” Opt. Commun. 284, 2678–2682 (2011).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Frezza, F.

M. Khalid, N. Tedeschi, and F. Frezza, “Analysis of reflection from a novel anisotropic lossy medium characterized by particular material properties,” J. Electromagnet. Wave. 31, 798–807 (2017).
[Crossref]

Gagulin, V.

V. Petrov and V. Gagulin, “Microwave absorbing materials,” Inorg. Mater. 37, 93–98 (2001).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Giessen, H.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Herzinger, C.

M. Schubert, T. Tiwald, and C. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187 (2000).
[Crossref]

Hillenbrand, R.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Hoffman, T.

D. Baranov, J. Edgar, T. Hoffman, N. Bassim, and J. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B 92, 201405 (2015).
[Crossref]

Hueso, L. E.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Jeon, K.

H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
[Crossref] [PubMed]

Jiang, T.

Z. Wang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials,” Opt. Commun. 284, 2678–2682 (2011).
[Crossref]

Kang, M.

H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
[Crossref] [PubMed]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Khalid, M.

M. Khalid, N. Tedeschi, and F. Frezza, “Analysis of reflection from a novel anisotropic lossy medium characterized by particular material properties,” J. Electromagnet. Wave. 31, 798–807 (2017).
[Crossref]

Kukushkin, A. V.

A. V. Kukushkin, A. A. Rukhadze, and K. Rukhadze, “On the existence conditions for a fast surface wave,” Phys.-Uspekhi 55, 1124 (2012).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2018).
[Crossref]

Lee, J.

H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
[Crossref] [PubMed]

Li, E. H.

A. B. Djurišić and E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
[Crossref]

Li, P.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref] [PubMed]

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Messina, R.

M. Tschikin, S.-A. Biehs, R. Messina, and P. Ben-Abdallah, “On the limits of the effective description of hyperbolic materials in the presence of surface waves,” J. Opt. 15, 105101 (2013).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2018).
[Crossref]

Nikitin, A. Y.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2018).
[Crossref]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Petrov, V.

V. Petrov and V. Gagulin, “Microwave absorbing materials,” Inorg. Mater. 37, 93–98 (2001).
[Crossref]

Prusnick, T.

S. Vangala, G. Siegel, T. Prusnick, and M. Snure, “Wafer scale BN on sapphire substrates for improved graphene transport,” Sci. Rep. 8, 8842 (2018).
[Crossref] [PubMed]

Rukhadze, A. A.

A. V. Kukushkin, A. A. Rukhadze, and K. Rukhadze, “On the existence conditions for a fast surface wave,” Phys.-Uspekhi 55, 1124 (2012).
[Crossref]

Rukhadze, K.

A. V. Kukushkin, A. A. Rukhadze, and K. Rukhadze, “On the existence conditions for a fast surface wave,” Phys.-Uspekhi 55, 1124 (2012).
[Crossref]

Ryu, H.

H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2018).
[Crossref]

Schubert, M.

M. Schubert, T. Tiwald, and C. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187 (2000).
[Crossref]

Siegel, G.

S. Vangala, G. Siegel, T. Prusnick, and M. Snure, “Wafer scale BN on sapphire substrates for improved graphene transport,” Sci. Rep. 8, 8842 (2018).
[Crossref] [PubMed]

Simovski, C.

D. Baranov, A. Vinogradov, and C. Simovski, “Perfect absorption at Zenneck wave to plane wave transition,” Metamaterials 6, 70–75 (2012).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2018).
[Crossref]

Snure, M.

S. Vangala, G. Siegel, T. Prusnick, and M. Snure, “Wafer scale BN on sapphire substrates for improved graphene transport,” Sci. Rep. 8, 8842 (2018).
[Crossref] [PubMed]

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Tedeschi, N.

M. Khalid, N. Tedeschi, and F. Frezza, “Analysis of reflection from a novel anisotropic lossy medium characterized by particular material properties,” J. Electromagnet. Wave. 31, 798–807 (2017).
[Crossref]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Tiwald, T.

M. Schubert, T. Tiwald, and C. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187 (2000).
[Crossref]

Tschikin, M.

M. Tschikin, S.-A. Biehs, R. Messina, and P. Ben-Abdallah, “On the limits of the effective description of hyperbolic materials in the presence of surface waves,” J. Opt. 15, 105101 (2013).
[Crossref]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref] [PubMed]

Vangala, S.

S. Vangala, G. Siegel, T. Prusnick, and M. Snure, “Wafer scale BN on sapphire substrates for improved graphene transport,” Sci. Rep. 8, 8842 (2018).
[Crossref] [PubMed]

Vélez, S.

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Vinogradov, A.

D. Baranov, A. Vinogradov, and C. Simovski, “Perfect absorption at Zenneck wave to plane wave transition,” Metamaterials 6, 70–75 (2012).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials,” Opt. Commun. 284, 2678–2682 (2011).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Yuh, H.

H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
[Crossref] [PubMed]

Zhao, J.

Z. Wang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials,” Opt. Commun. 284, 2678–2682 (2011).
[Crossref]

Zhu, B.

Z. Wang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials,” Opt. Commun. 284, 2678–2682 (2011).
[Crossref]

Inorg. Mater. (1)

V. Petrov and V. Gagulin, “Microwave absorbing materials,” Inorg. Mater. 37, 93–98 (2001).
[Crossref]

J. Appl. Phys. (1)

A. B. Djurišić and E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
[Crossref]

J. Electromagnet. Wave. (1)

M. Khalid, N. Tedeschi, and F. Frezza, “Analysis of reflection from a novel anisotropic lossy medium characterized by particular material properties,” J. Electromagnet. Wave. 31, 798–807 (2017).
[Crossref]

J. Opt. (1)

M. Tschikin, S.-A. Biehs, R. Messina, and P. Ben-Abdallah, “On the limits of the effective description of hyperbolic materials in the presence of surface waves,” J. Opt. 15, 105101 (2013).
[Crossref]

Light Sci. Appl. (1)

M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light Sci. Appl. 7, 17172 (2018).
[Crossref]

Metamaterials (1)

D. Baranov, A. Vinogradov, and C. Simovski, “Perfect absorption at Zenneck wave to plane wave transition,” Metamaterials 6, 70–75 (2012).
[Crossref]

Nano Lett. (3)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Wang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Explicit expression of the pseudo-Brewster angle for anisotropic metamaterials,” Opt. Commun. 284, 2678–2682 (2011).
[Crossref]

Philos. Trans. R. Soc. Lond. (1)

D. Brewster, “On the laws which regulate the polarisation of light by reflexion from transparent bodies,” Philos. Trans. R. Soc. Lond. 105, 125–159 (1815).

Phys. Rev. B (3)

D. Baranov, J. Edgar, T. Hoffman, N. Bassim, and J. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B 92, 201405 (2015).
[Crossref]

M. Schubert, T. Tiwald, and C. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187 (2000).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2018).
[Crossref]

Y. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Phys.-Uspekhi (1)

A. V. Kukushkin, A. A. Rukhadze, and K. Rukhadze, “On the existence conditions for a fast surface wave,” Phys.-Uspekhi 55, 1124 (2012).
[Crossref]

Sci. Rep. (2)

S. Vangala, G. Siegel, T. Prusnick, and M. Snure, “Wafer scale BN on sapphire substrates for improved graphene transport,” Sci. Rep. 8, 8842 (2018).
[Crossref] [PubMed]

H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, “A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates,” Sci. Rep. 7, 44814 (2017).
[Crossref] [PubMed]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Other (1)

C. A. Balanis, Antenna theory: analysis and design (Wiley-Interscience; 3rd edition, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Magnitude of reflection coefficient for a p polarized light as a function of incident angle from a plane interface between air and isotropic dielectric material having permittivity ϵ. The blue and red curves correspond to lossless (ϵ = 2) and lossy ( ϵ = 2 + 2 i) cases, respectively. Inset shows the schematic of the planar system.
Fig. 2
Fig. 2 Origin of Brewster phenomenon illustrated in terms of material polarization. (a) A lossless isotropic medium with p polarized light incident at the Brewster angle will have all the induced dipoles (shown by red arrows) aligned along the reflection direction. (b) However, if there is loss present in the medium, the dipoles, instead of oscillating along a line, rotate with an elliptical trajectory. (c) This can be viewed as a superposition of two orthogonal linear dipole oscillation with a phase delay as shown by the dotted and solid arrows. The presence of dipoles oscillating perpendicular to the reflected ray (solid arrows) sends energy back and suppress the Brewster phenomenon.
Fig. 3
Fig. 3 Three-dimensional plot of ϵ 2 τ   ' for IPA as a function of ϵ 2 n   ' and ϵ 2 τ   ''. Panel (a) corresponds to ϵ 2 n   '' = 200. Here the real part of the tangential permittivity ϵ 2 τ   ' is positive everywhere in the plot, and ϵ 2 n   ' < 0 corresponds to the hyperbolic regime, while the region ϵ 2 n ' > 0 describes dielectric band. In panel (b), the imaginary part of the normal permittivity component ϵ 2 n   '' = 2, and the solution includes both hyperbolic and dielectric bands. Note that ϵ 2 τ   ' and ϵ 2 n   ' are never simultaneously negative. In panel (c), we have ϵ 2 n '' = 0.02. Here the region 0 < ϵ 2 n ' with ϵ 2 t ' < 0, again corresponds to the hyperbolic behavior.
Fig. 4
Fig. 4 Perfect absorption from Al 2 O 3 - air interface: (a) dielectric permittivity [17] of both tangential and normal components of Al 2 O 3 slab vs. frequency, (b) 2D plot of reflection from Al 2 O 3 slab for p polarization as a function of incident angle (degrees) and frequency ( cm 1). The false color shows the reflection amplitude. Note the presence of perfect absorption at the frequencies ω 503.46   cm 1 and 520.93   cm 1, indicated by the arrows, (c) the absolute value of the reflection coefficient as a function of incident angle for the frequencies indicated by two arrows in (b). Reflection at 64.465   and 79.151   respectively goes to zero, corresponding to the Brewster angles for the indicated frequencies.
Fig. 5
Fig. 5 Perfect absorption from h-BN - air interface: (a) dielectric permittivity of h-BN slab as a function of frequency, (b) 2D plot of reflection from hBN-air interface for p polarized light as a function of incident angle (in degrees) and frequency (cm-1). The false color shows the reflection amplitude. The presence of perfect absorption at frequency ω 611.7   cm 1 and ω 952.8   cm 1 are shown by the blue and red arrows respectively, (c) the absolute value of the reflection coefficient as a function of incident angle for the indicated arrows in (b).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k n = ϵ ( ω c ) 2 k τ 2
P n P τ = E n E τ = D n D τ = k τ k n
P n P τ = ϵ n 1 ϵ n ϵ τ ϵ τ 1 D n D τ .
r p = ε 2 τ k 1 n ε 1 τ k 2 n ε 2 τ k 1 n + ε 1 τ k 2 n ,
k 1 τ 2 ε 1 n + k 1 n 2 ε 1 τ = ( ω c ) 2 = k 2 τ 2 ε 2 n + k 2 n 2 ε 2 τ .
ε 2 τ k 1 n = ε 1 τ k 2 n .
ε 2 τ ' + ε 2 τ '' ε 2 n '' ε 2 n ' = 1 1 ( c ω ) 2 k τ 2
( ε 2 n '' ) 2 ε 2 n '' ε 2 t '' ( ε 2 τ ' 1 ) ε 2 n ' + ( ε 2 n ' ) 2 = 0

Metrics