Abstract

Unmanned aerial vehicles (UAVs)—or drones—present compelling new opportunities for airborne gas sensing in applications such as environmental monitoring, hazardous scene assessment, and facilities’ inspection. Instrumenting a UAV for this purpose encounters trade-offs between sensor size, weight, power, and performance, which drives the adoption of lightweight electrochemical and photo-ionisation detectors. However, this occurs at the expense of speed, selectivity, sensitivity, accuracy, resolution, and traceability. Here, we report on the design and integration of a broadband Fourier-transform infrared spectrometer with an autonomous UAV, providing ro-vibrational spectroscopy throughout the molecular fingerprint region from 3 – 11 µm (3333 – 909 cm−1) and enabling rapid, quantitative aerial surveys of multiple species simultaneously with an estimated noise-limited performance of 18 ppm (propane). Bayesian interpolation of the acquired gas concentrations is shown to provide both localization of a point source with approximately one meter accuracy, and distribution mapping of a gas cloud, with accompanying uncertainty quantification.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Open-path multi-species remote sensing with a broadband optical parametric oscillator

Oguzhan Kara, Frazer Sweeney, Marius Rutkauskas, C. Farrell, C. G. Leburn, and Derryck T. Reid
Opt. Express 27(15) 21358-21366 (2019)

Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser

Zhen Wang, Zhili Li, and Wei Ren
Opt. Express 24(4) 4143-4154 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133(629), 1913–1931 (2007).
    [Crossref]
  2. O. Evangelatos and J. Rolim, “An airborne wireless sensor system for near-real time air pollution monitoring,” Sensors and Transducers 189, 12–21 (2015).
  3. A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
    [Crossref]
  4. M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites,” Sensors (Basel) 15(8), 19667–19687 (2015).
    [Crossref] [PubMed]
  5. N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
    [Crossref]
  6. W. A. Harrison, D. J. Lary, B. J. Nathan, and A. G. Moore, “Using Remote Control Aerial Vehicles to Study Variability of Airborne Particulates,” Air, Soil and Water Research 8, ASWR.S30774 (2015).
  7. S. Martin, J. Bange, and F. Beyrich, “Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo,”,” Atmos. Meas. Tech. 4(4), 705–716 (2011).
    [Crossref]
  8. T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
    [Crossref]
  9. B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
    [Crossref]
  10. T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives,” Sensors (Basel) 16(7), 1072 (2016).
    [Crossref] [PubMed]
  11. M. Rossi and D. Brunelli, “Autonomous Gas Detection and Mapping With Unmanned Aerial Vehicles,” IEEE Trans. Instrum. Meas. 65(4), 765–775 (2016).
    [Crossref]
  12. B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
    [Crossref] [PubMed]
  13. R. Knake and P. C. Hauser, “Sensitive electrochemical detection of ozone,” Anal. Chim. Acta 459(2), 199–207 (2002).
    [Crossref]
  14. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel) 10(3), 2088–2106 (2010).
    [Crossref] [PubMed]
  15. G. Saggiani, F. Persiani, A. Ceruti, P. Tortora, E. Troiani, F. Giuletti, S. Amici, M. Buongiorno, G. Distefano, G. Bentini, M. Bianconi, A. Cerutti, A. Nubile, S. Sugliani, M. Chiarini, G. Pennestri, S. Petrini, and D. Pieri, “A UAV system for observing volcanoes and natural hazards. American Geophysical Union, Fall Meeting 2007, Washington, DC, USA. Abstract GC11B-05 (2007).
  16. J. J. Roldán, G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos, “Mini-UAV based sensory system for measuring environmental variables in greenhouses,” Sensors (Basel) 15(2), 3334–3350 (2015).
    [Crossref] [PubMed]
  17. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58(12), 1452–1461 (2004).
    [Crossref] [PubMed]
  18. C. E. Rasmussen, “Gaussian Processes in Machine Learning,” in Advanced Lectures on Machine Learning (Springer Berlin Heidelberg, 2004), pp. 63–71.
  19. A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies,” J. Mach. Learn. Res. 9, 235–284 (2008).
  20. J. Le Ny and G. J. Pappas, “On trajectory optimization for active sensing in Gaussian process models,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference (IEEE, 2009).
    [Crossref]
  21. P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, and J. Schiller, “Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping,” IEEE Robot. Autom. Mag. 19(1), 50–61 (2012).
    [Crossref]
  22. G. T. Poyi, B. Wiggins, M. H. Wu, and A. Bousbaine, “Validation of a quad-rotor helicopter Matlab/Simulink and Solidworks models,” in IET Conference on Control and Automation 2013: Uniting Problems and Solutions (Institution of Engineering and Technology, 2013).
    [Crossref]
  23. P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air quality measurement in urban areas,” in 32nd AIAA Applied Aerodynamics Conference (American Institute of Aeronautics and Astronautics, 2014).
    [Crossref]
  24. B. Tuzson, M. Mangold, H. Looser, A. Manninen, and L. Emmenegger, “Compact multipass optical cell for laser spectroscopy,” Opt. Lett. 38(3), 257–259 (2013).
    [Crossref] [PubMed]
  25. M. Graf, L. Emmenegger, and B. Tuzson, “Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy,” Opt. Lett. 43(11), 2434–2437 (2018).
    [Crossref] [PubMed]
  26. M. Asenov, M. Rutkauskas, D. Reid, K. Subr, and S. Ramamoorthy, “Active localization of gas leaks using fluid simulation,” IEEE Robot. Autom. Lett. 1, 1 (2019).
    [Crossref]

2019 (1)

M. Asenov, M. Rutkauskas, D. Reid, K. Subr, and S. Ramamoorthy, “Active localization of gas leaks using fluid simulation,” IEEE Robot. Autom. Lett. 1, 1 (2019).
[Crossref]

2018 (1)

2016 (2)

T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives,” Sensors (Basel) 16(7), 1072 (2016).
[Crossref] [PubMed]

M. Rossi and D. Brunelli, “Autonomous Gas Detection and Mapping With Unmanned Aerial Vehicles,” IEEE Trans. Instrum. Meas. 65(4), 765–775 (2016).
[Crossref]

2015 (5)

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

O. Evangelatos and J. Rolim, “An airborne wireless sensor system for near-real time air pollution monitoring,” Sensors and Transducers 189, 12–21 (2015).

M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites,” Sensors (Basel) 15(8), 19667–19687 (2015).
[Crossref] [PubMed]

N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
[Crossref]

J. J. Roldán, G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos, “Mini-UAV based sensory system for measuring environmental variables in greenhouses,” Sensors (Basel) 15(2), 3334–3350 (2015).
[Crossref] [PubMed]

2014 (1)

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

2013 (2)

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

B. Tuzson, M. Mangold, H. Looser, A. Manninen, and L. Emmenegger, “Compact multipass optical cell for laser spectroscopy,” Opt. Lett. 38(3), 257–259 (2013).
[Crossref] [PubMed]

2012 (1)

P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, and J. Schiller, “Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping,” IEEE Robot. Autom. Mag. 19(1), 50–61 (2012).
[Crossref]

2011 (1)

S. Martin, J. Bange, and F. Beyrich, “Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo,”,” Atmos. Meas. Tech. 4(4), 705–716 (2011).
[Crossref]

2010 (1)

C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel) 10(3), 2088–2106 (2010).
[Crossref] [PubMed]

2008 (2)

A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies,” J. Mach. Learn. Res. 9, 235–284 (2008).

A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
[Crossref]

2007 (1)

M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133(629), 1913–1931 (2007).
[Crossref]

2004 (1)

2002 (1)

R. Knake and P. C. Hauser, “Sensitive electrochemical detection of ozone,” Anal. Chim. Acta 459(2), 199–207 (2002).
[Crossref]

Aiuppa, A.

A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
[Crossref]

Altstädter, B.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Alvarado, M.

M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites,” Sensors (Basel) 15(8), 19667–19687 (2015).
[Crossref] [PubMed]

Asadi, S.

P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, and J. Schiller, “Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping,” IEEE Robot. Autom. Mag. 19(1), 50–61 (2012).
[Crossref]

Asenov, M.

M. Asenov, M. Rutkauskas, D. Reid, K. Subr, and S. Ramamoorthy, “Active localization of gas leaks using fluid simulation,” IEEE Robot. Autom. Lett. 1, 1 (2019).
[Crossref]

Baars, H.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Balistreri, C.

P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air quality measurement in urban areas,” in 32nd AIAA Applied Aerodynamics Conference (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

Bange, J.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

S. Martin, J. Bange, and F. Beyrich, “Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo,”,” Atmos. Meas. Tech. 4(4), 705–716 (2011).
[Crossref]

Barrientos, A.

J. J. Roldán, G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos, “Mini-UAV based sensory system for measuring environmental variables in greenhouses,” Sensors (Basel) 15(2), 3334–3350 (2015).
[Crossref] [PubMed]

Bartholmai, M.

P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, and J. Schiller, “Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping,” IEEE Robot. Autom. Mag. 19(1), 50–61 (2012).
[Crossref]

Bates, T. S.

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Beyrich, F.

S. Martin, J. Bange, and F. Beyrich, “Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo,”,” Atmos. Meas. Tech. 4(4), 705–716 (2011).
[Crossref]

Brechtel, F. J.

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Brunelli, D.

M. Rossi and D. Brunelli, “Autonomous Gas Detection and Mapping With Unmanned Aerial Vehicles,” IEEE Trans. Instrum. Meas. 65(4), 765–775 (2016).
[Crossref]

Burkhart, J. F.

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Butwin, M. K.

N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
[Crossref]

Chu, P. M.

Clark, N. N.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Corless, A.

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Corrigan, C. E.

M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133(629), 1913–1931 (2007).
[Crossref]

Covington, A. N.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

del Cerro, J.

J. J. Roldán, G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos, “Mini-UAV based sensory system for measuring environmental variables in greenhouses,” Sensors (Basel) 15(2), 3334–3350 (2015).
[Crossref] [PubMed]

Doshi, A.

M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites,” Sensors (Basel) 15(8), 19667–19687 (2015).
[Crossref] [PubMed]

Emmenegger, L.

Evangelatos, O.

O. Evangelatos and J. Rolim, “An airborne wireless sensor system for near-real time air pollution monitoring,” Sensors and Transducers 189, 12–21 (2015).

Fletcher, A.

M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites,” Sensors (Basel) 15(8), 19667–19687 (2015).
[Crossref] [PubMed]

Gao, R.

C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel) 10(3), 2088–2106 (2010).
[Crossref] [PubMed]

Giudice, G.

A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
[Crossref]

Golston, L. M.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Gonzalez, F.

T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives,” Sensors (Basel) 16(7), 1072 (2016).
[Crossref] [PubMed]

M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites,” Sensors (Basel) 15(8), 19667–19687 (2015).
[Crossref] [PubMed]

Graf, M.

Guestrin, C.

A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies,” J. Mach. Learn. Res. 9, 235–284 (2008).

Gurrieri, S.

A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
[Crossref]

Haas, P. Y.

P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air quality measurement in urban areas,” in 32nd AIAA Applied Aerodynamics Conference (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

Harrison, W. A.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Hauser, P. C.

R. Knake and P. C. Hauser, “Sensitive electrochemical detection of ozone,” Anal. Chim. Acta 459(2), 199–207 (2002).
[Crossref]

Hermann, M.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Hodson, A. J.

A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
[Crossref]

Johnson, D. R.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Johnson, J. E.

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Johnson, P. A.

Johnson, T. J.

Joossen, G.

J. J. Roldán, G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos, “Mini-UAV based sensory system for measuring environmental variables in greenhouses,” Sensors (Basel) 15(2), 3334–3350 (2015).
[Crossref] [PubMed]

Käthner, R.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Kim, D.

M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133(629), 1913–1931 (2007).
[Crossref]

Knake, R.

R. Knake and P. C. Hauser, “Sensitive electrochemical detection of ozone,” Anal. Chim. Acta 459(2), 199–207 (2002).
[Crossref]

Kramm, G.

N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
[Crossref]

Krause, A.

A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies,” J. Mach. Learn. Res. 9, 235–284 (2008).

Lampert, A.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Lary, D. J.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Lilienthal, A.

P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, and J. Schiller, “Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping,” IEEE Robot. Autom. Mag. 19(1), 50–61 (2012).
[Crossref]

Looser, H.

Madden, J. M.

N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
[Crossref]

Mangold, M.

Manninen, A.

Martin, S.

S. Martin, J. Bange, and F. Beyrich, “Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo,”,” Atmos. Meas. Tech. 4(4), 705–716 (2011).
[Crossref]

McGonigle, A. J. S.

A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
[Crossref]

Meinig, C.

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Miljievic, B.

T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives,” Sensors (Basel) 16(7), 1072 (2016).
[Crossref] [PubMed]

Mölders, N.

N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
[Crossref]

Morawska, L.

T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives,” Sensors (Basel) 16(7), 1072 (2016).
[Crossref] [PubMed]

Nathan, B. J.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Neumann, P.

P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, and J. Schiller, “Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping,” IEEE Robot. Autom. Mag. 19(1), 50–61 (2012).
[Crossref]

O’Brien, A. S.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Pekoz, H.

P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air quality measurement in urban areas,” in 32nd AIAA Applied Aerodynamics Conference (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

Pignatiello, A.

P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air quality measurement in urban areas,” in 32nd AIAA Applied Aerodynamics Conference (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

Platis, A.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Pontelandolfo, P.

P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air quality measurement in urban areas,” in 32nd AIAA Applied Aerodynamics Conference (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

Quinn, P. K.

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Ramamoorthy, S.

M. Asenov, M. Rutkauskas, D. Reid, K. Subr, and S. Ramamoorthy, “Active localization of gas leaks using fluid simulation,” IEEE Robot. Autom. Lett. 1, 1 (2019).
[Crossref]

Ramana, M. V.

M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133(629), 1913–1931 (2007).
[Crossref]

Ramanathan, V.

M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133(629), 1913–1931 (2007).
[Crossref]

Reid, D.

M. Asenov, M. Rutkauskas, D. Reid, K. Subr, and S. Ramamoorthy, “Active localization of gas leaks using fluid simulation,” IEEE Robot. Autom. Lett. 1, 1 (2019).
[Crossref]

Rhoderick, G. C.

Ristovski, Z. D.

T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives,” Sensors (Basel) 16(7), 1072 (2016).
[Crossref] [PubMed]

Roberts, G. C.

M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133(629), 1913–1931 (2007).
[Crossref]

Roldán, J. J.

J. J. Roldán, G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos, “Mini-UAV based sensory system for measuring environmental variables in greenhouses,” Sensors (Basel) 15(2), 3334–3350 (2015).
[Crossref] [PubMed]

Rolim, J.

O. Evangelatos and J. Rolim, “An airborne wireless sensor system for near-real time air pollution monitoring,” Sensors and Transducers 189, 12–21 (2015).

Ross, K.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Rossi, M.

M. Rossi and D. Brunelli, “Autonomous Gas Detection and Mapping With Unmanned Aerial Vehicles,” IEEE Trans. Instrum. Meas. 65(4), 765–775 (2016).
[Crossref]

Rutkauskas, M.

M. Asenov, M. Rutkauskas, D. Reid, K. Subr, and S. Ramamoorthy, “Active localization of gas leaks using fluid simulation,” IEEE Robot. Autom. Lett. 1, 1 (2019).
[Crossref]

Sams, R. L.

Sanz, D.

J. J. Roldán, G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos, “Mini-UAV based sensory system for measuring environmental variables in greenhouses,” Sensors (Basel) 15(2), 3334–3350 (2015).
[Crossref] [PubMed]

Sassen, K.

N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
[Crossref]

Schiller, J.

P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, and J. Schiller, “Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping,” IEEE Robot. Autom. Mag. 19(1), 50–61 (2012).
[Crossref]

Scholtz, A.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Sharpe, S. W.

Singh, A.

A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies,” J. Mach. Learn. Res. 9, 235–284 (2008).

Stalin, S. E.

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Subr, K.

M. Asenov, M. Rutkauskas, D. Reid, K. Subr, and S. Ramamoorthy, “Active localization of gas leaks using fluid simulation,” IEEE Robot. Autom. Lett. 1, 1 (2019).
[Crossref]

Tamburello, G.

A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
[Crossref]

Tao, L.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Tran, H. N. Q.

N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
[Crossref]

Triscone, G.

P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air quality measurement in urban areas,” in 32nd AIAA Applied Aerodynamics Conference (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

Tuzson, B.

Villa, T. F.

T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives,” Sensors (Basel) 16(7), 1072 (2016).
[Crossref] [PubMed]

Wang, C.

C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel) 10(3), 2088–2106 (2010).
[Crossref] [PubMed]

Wehner, B.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Wildmann, N.

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Xiang, D.

C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel) 10(3), 2088–2106 (2010).
[Crossref] [PubMed]

Yin, L.

C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel) 10(3), 2088–2106 (2010).
[Crossref] [PubMed]

Zhang, L.

C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel) 10(3), 2088–2106 (2010).
[Crossref] [PubMed]

Zondlo, M. A.

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

R. Knake and P. C. Hauser, “Sensitive electrochemical detection of ozone,” Anal. Chim. Acta 459(2), 199–207 (2002).
[Crossref]

Appl. Spectrosc. (1)

Atmos. Meas. Tech. (2)

S. Martin, J. Bange, and F. Beyrich, “Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo,”,” Atmos. Meas. Tech. 4(4), 705–716 (2011).
[Crossref]

T. S. Bates, P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart, “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech. 6(8), 2115–2120 (2013).
[Crossref]

Atmospheric Measurement Techniques Discussions (1)

B. Altstädter, A. Platis, B. Wehner, A. Scholtz, A. Lampert, N. Wildmann, M. Hermann, R. Käthner, J. Bange, and H. Baars, “ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmospheric Measurement Techniques Discussions 7(12), 12283–12322 (2014).
[Crossref]

Environ. Sci. Technol. (1)

B. J. Nathan, L. M. Golston, A. S. O’Brien, K. Ross, W. A. Harrison, L. Tao, D. J. Lary, D. R. Johnson, A. N. Covington, N. N. Clark, and M. A. Zondlo, “Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft,” Environ. Sci. Technol. 49(13), 7896–7903 (2015).
[Crossref] [PubMed]

Geophys. Res. Lett. (1)

A. J. S. McGonigle, A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson, and S. Gurrieri, “Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes,” Geophys. Res. Lett. 35(6), L06303 (2008).
[Crossref]

IEEE Robot. Autom. Lett. (1)

M. Asenov, M. Rutkauskas, D. Reid, K. Subr, and S. Ramamoorthy, “Active localization of gas leaks using fluid simulation,” IEEE Robot. Autom. Lett. 1, 1 (2019).
[Crossref]

IEEE Robot. Autom. Mag. (1)

P. Neumann, S. Asadi, A. Lilienthal, M. Bartholmai, and J. Schiller, “Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping,” IEEE Robot. Autom. Mag. 19(1), 50–61 (2012).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Rossi and D. Brunelli, “Autonomous Gas Detection and Mapping With Unmanned Aerial Vehicles,” IEEE Trans. Instrum. Meas. 65(4), 765–775 (2016).
[Crossref]

J. Mach. Learn. Res. (1)

A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies,” J. Mach. Learn. Res. 9, 235–284 (2008).

Open Journal of Air Pollution (1)

N. Mölders, M. K. Butwin, J. M. Madden, H. N. Q. Tran, K. Sassen, and G. Kramm, “Theoretical Investigations on mapping mean distributions of particulate matter, inert, reactive, and secondary pollutants from wildfires by unmanned air vehicles (UAVs),” Open Journal of Air Pollution 4(3), 149–174 (2015).
[Crossref]

Opt. Lett. (2)

Q. J. R. Meteorol. Soc. (1)

M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133(629), 1913–1931 (2007).
[Crossref]

Sensors (Basel) (4)

M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites,” Sensors (Basel) 15(8), 19667–19687 (2015).
[Crossref] [PubMed]

T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives,” Sensors (Basel) 16(7), 1072 (2016).
[Crossref] [PubMed]

C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors (Basel) 10(3), 2088–2106 (2010).
[Crossref] [PubMed]

J. J. Roldán, G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos, “Mini-UAV based sensory system for measuring environmental variables in greenhouses,” Sensors (Basel) 15(2), 3334–3350 (2015).
[Crossref] [PubMed]

Sensors and Transducers (1)

O. Evangelatos and J. Rolim, “An airborne wireless sensor system for near-real time air pollution monitoring,” Sensors and Transducers 189, 12–21 (2015).

Other (6)

G. Saggiani, F. Persiani, A. Ceruti, P. Tortora, E. Troiani, F. Giuletti, S. Amici, M. Buongiorno, G. Distefano, G. Bentini, M. Bianconi, A. Cerutti, A. Nubile, S. Sugliani, M. Chiarini, G. Pennestri, S. Petrini, and D. Pieri, “A UAV system for observing volcanoes and natural hazards. American Geophysical Union, Fall Meeting 2007, Washington, DC, USA. Abstract GC11B-05 (2007).

C. E. Rasmussen, “Gaussian Processes in Machine Learning,” in Advanced Lectures on Machine Learning (Springer Berlin Heidelberg, 2004), pp. 63–71.

W. A. Harrison, D. J. Lary, B. J. Nathan, and A. G. Moore, “Using Remote Control Aerial Vehicles to Study Variability of Airborne Particulates,” Air, Soil and Water Research 8, ASWR.S30774 (2015).

J. Le Ny and G. J. Pappas, “On trajectory optimization for active sensing in Gaussian process models,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference (IEEE, 2009).
[Crossref]

G. T. Poyi, B. Wiggins, M. H. Wu, and A. Bousbaine, “Validation of a quad-rotor helicopter Matlab/Simulink and Solidworks models,” in IET Conference on Control and Automation 2013: Uniting Problems and Solutions (Institution of Engineering and Technology, 2013).
[Crossref]

P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air quality measurement in urban areas,” in 32nd AIAA Applied Aerodynamics Conference (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Optical configuration and in-flight performance data for the UAV-mounted Fourier-transform spectrometer. (a) UAV schematic showing spectrometer suspended underneath, and the C-shaped sensing path (dashed line) of 1 m length. DFB,1550-nm single-frequency laser diode; L1, aspheric lenses (coated for 1.5 µm), L2, ZnSe lenses; BS, CaF2 beamsplitter; W, Ge windows; R, retroreflectors; M, silver mirrors; InGaAs, InGaAs photodiode; MCT, MCT detector. (b) The assembled system in field trials. (c) Representative mid-infrared and (d) reference laser interference fringes obtained from the UAV before take-off (red), and in-flight (blue). (e) Infrared absorption spectrum obtained in flight (blue) and least squares fit (red). (f) Fitted envelope, which is modelled as a spline curve with the positions of the anchor points (symbols) being unconstrained fitting parameters; inset: fitted sinc2(ν) instrument function, corresponding to the triangular apodization used. (g–i) Fitted transmittance spectra for water, carbon dioxide and propane. These spectra, obtained during a propane sensing flight, show a background CO2 level of 400 ppm and concentrations for water of 1.16% and for propane of 362 ppm. (j) The fitting residual between the two spectra in (e), presented on the same scale. Insufficient instrument resolution to resolve the dense and saturated line structure of water in the 5 – 7-µm region leads to the remaining fitting uncertainty here.
Fig. 2
Fig. 2 Localisation of point sources of gas emissions. (a) Flight plan and (d) site image, showing the location of the propane and carbon dioxide gas sources. (b, c) Gas concentration and (e, f) accompanying uncertainty maps prepared by Bayesian interpolation of the recorded concentration data for propane and for carbon dioxide. The maximum likelihood locations of the carbon dioxide and propane sources are denoted, respectively, by the green and red crosses, with the error bars being the spatial sampling resolution. Satellite imagery ©2018 Google, used with permission under Google Terms of Service.
Fig. 3
Fig. 3 Mapping atmospheric carbon dioxide and water-vapor distributions. (a) Site image illustrating the two dung-heap fires, between which the UAV was flown. No flames were visible from the fires. (b, c) Concentration maps produced from data recorded for (b) carbon dioxide and (c) water vapor during manual flight between two dung fires. Sampling points are shown in black. (d, e) Corresponding gas concentration uncertainty maps for (d) carbon dioxide and (e) water vapor, obtained from the Gaussian-process fitting. Satellite imagery ©2018 Google, used with permission under Google Terms of Service.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I( ν ˜ )= I o ( ν ˜ ) 10 A( ν ˜ )
A( ν ˜ )= A C O 2 ( ν ˜ )+ A C 3 H 8 ( ν ˜ )+ A H 2 O ( ν ˜ )
A X ( ν ˜ )= A PNNL ( ν ˜ )σ( ν ˜ ) L m C PPM

Metrics