Abstract

Development of the wideband and tunable quasi-optic terahertz (THz) components is in high demand. In this work, we demonstrate a tunable achromatic quarter-wave plate (AQWP) for the THz frequency range. The phase retardation of this device can be set at 90° ± 9° from 0.20 to 0.50 THz. The operation range from 0.20 to 0.50 THz can be tuned to from 0.30 to 0.70 THz by introducing three nematic liquid crystals phase retarders, of which the birefringence can be magnetically tuned. The frequency-dependent phase retardation is in good agreement with theoretical predictions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field

Jian-Ping Yu, Sai Chen, Fei Fan, Jie-Rong Cheng, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(2) 663-673 (2018)

Terahertz achromatic quarter-wave plate

Jean-Baptiste Masson and Guilhem Gallot
Opt. Lett. 31(2) 265-267 (2006)

Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals

Yun-Yun Ji, Fei Fan, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(10) 12852-12862 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Lavrentovich, T. A. Sergan, and J. R. Kelly, “Switchable broadband achromatic half-wave plate with nematic liquid crystals,” Opt. Lett. 29(12), 1411–1413 (2004).
    [Crossref] [PubMed]
  2. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Achromatic quarter-wave plate using crystalline quartz,” Appl. Opt. 51(12), 1976–1980 (2012).
    [Crossref] [PubMed]
  3. R.-P. Pan, C.-W. Lai, C.-J. Lin, C.-F. Hsieh, and C.-L. Pan, “Achromatic liquid crystal phase plate for short laser pulses,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 65–71 (2010).
    [Crossref]
  4. R. M. A. Azzam and C. L. Spinu, “Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si-SiO2 interface,” J. Opt. Soc. Am. A 21(10), 2019–2022 (2004).
    [Crossref] [PubMed]
  5. C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
    [Crossref] [PubMed]
  6. D. M. Mittleman, “Perspective: terahertz science and technology,”' J. Appl. Phys. 122(23), 230901 (2017).
    [Crossref]
  7. B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
    [Crossref]
  8. C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
    [Crossref] [PubMed]
  9. C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
    [Crossref]
  10. C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
    [Crossref]
  11. C.-S. Yang, C. Kuo, C.-C. Tang, J. C. Chen, R.-P. Pan, and C.-L. Pan, “Liquid-crystal terahertz quarter-wave plate using chemical-vapor-deposited graphene electrodes,” IEEE Photon. J. 7(6), Article#: 2200808 (2015).
  12. S. F. Zhou, L. Reekie, Y. T. Chow, H. P. Chan, and K. M. Luk, “Phase-shifted fiber Bragg gratings for terahertz range,” IEEE Photonics Technol. Lett. 24(20), 1875–1877 (2012).
    [Crossref]
  13. C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
    [Crossref] [PubMed]
  14. B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
    [Crossref] [PubMed]
  15. C.-L. Pan, C.-J. Lin, C.-S. Yang, W.-T. Wu, and R.-P. Pan, “Liquid-Crystal-Based Phase Gratings and Beam Steerers,” Chapter 10, in “Liquid Crystals - Recent Advancements in Fundamental and Device Technologies,” InTech Open, London, UK (2018).
  16. B. Zhang and Y. Gong, “Achromatic terahertz quarter waveplate based on silicon grating,” Opt. Express 23(11), 14897–14902 (2015).
    [Crossref] [PubMed]
  17. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]
  18. J. Ornik, L. Gomell, S. F. Busch, M. Hermans, and M. Koch, “High quality terahertz glass wave plates,” Opt. Express 26(25), 32631–32639 (2018).
    [Crossref] [PubMed]
  19. Y.-Y. Ji, F. Fan, X.-H. Wang, and S.-J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
    [Crossref] [PubMed]
  20. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
    [Crossref] [PubMed]
  21. C.-S. Yang, C.-J. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B 27(9), 1866–1873 (2010).
    [Crossref]
  22. F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22(8), 386–388 (1973).
    [Crossref]
  23. P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals”, 2nd ed. (Oxford, New York, 1983), Chap. 3.
  24. C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
    [Crossref]

2019 (1)

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

2018 (2)

2017 (2)

2016 (1)

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

2015 (1)

2014 (2)

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

2013 (1)

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

2012 (3)

2010 (2)

C.-S. Yang, C.-J. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B 27(9), 1866–1873 (2010).
[Crossref]

R.-P. Pan, C.-W. Lai, C.-J. Lin, C.-F. Hsieh, and C.-L. Pan, “Achromatic liquid crystal phase plate for short laser pulses,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 65–71 (2010).
[Crossref]

2008 (1)

2006 (1)

2004 (3)

1973 (1)

F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22(8), 386–388 (1973).
[Crossref]

Absil, O.

Azzam, R. M. A.

Bhattacharya, K.

Busch, S. F.

Chakraborty, A. K.

Chan, H. P.

S. F. Zhou, L. Reekie, Y. T. Chow, H. P. Chan, and K. M. Luk, “Phase-shifted fiber Bragg gratings for terahertz range,” IEEE Photonics Technol. Lett. 24(20), 1875–1877 (2012).
[Crossref]

Chang, C.-H.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Chang, S.-J.

Chen, C.-Y.

Chen, P.-H.

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

Chow, Y. T.

S. F. Zhou, L. Reekie, Y. T. Chow, H. P. Chan, and K. M. Luk, “Phase-shifted fiber Bragg gratings for terahertz range,” IEEE Photonics Technol. Lett. 24(20), 1875–1877 (2012).
[Crossref]

Delacroix, C.

Fan, F.

Forsberg, P.

Gallot, G.

Gao, J. R.

Gomell, L.

Gong, Y.

Groppi, C.

Habraken, S.

Hanot, C.

Hayton, D. J.

Hermans, M.

Hsieh, C.-F.

Ji, Y.-Y.

Kahn, F. J.

F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22(8), 386–388 (1973).
[Crossref]

Karlsson, M.

Kelly, J. R.

Koch, M.

Kuo, C.

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

Lai, C.-W.

R.-P. Pan, C.-W. Lai, C.-J. Lin, C.-F. Hsieh, and C.-L. Pan, “Achromatic liquid crystal phase plate for short laser pulses,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 65–71 (2010).
[Crossref]

Lavrentovich, M. D.

Li, Y.-T.

Lin, C.-J.

Lin, M.-H.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Lin, Y.-F.

Liu, X. X.

Lu, B.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Luk, K. M.

S. F. Zhou, L. Reekie, Y. T. Chow, H. P. Chan, and K. M. Luk, “Phase-shifted fiber Bragg gratings for terahertz range,” IEEE Photonics Technol. Lett. 24(20), 1875–1877 (2012).
[Crossref]

Luo, Y. C.

Mao, H.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Masson, J.-B.

Mawet, D.

Mirzaei, B.

Mittleman, D. M.

D. M. Mittleman, “Perspective: terahertz science and technology,”' J. Appl. Phys. 122(23), 230901 (2017).
[Crossref]

Ornik, J.

Pan, C.-L.

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

C.-S. Yang, C.-J. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B 27(9), 1866–1873 (2010).
[Crossref]

R.-P. Pan, C.-W. Lai, C.-J. Lin, C.-F. Hsieh, and C.-L. Pan, “Achromatic liquid crystal phase plate for short laser pulses,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 65–71 (2010).
[Crossref]

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

Pan, R.-P.

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

R.-P. Pan, C.-W. Lai, C.-J. Lin, C.-F. Hsieh, and C.-L. Pan, “Achromatic liquid crystal phase plate for short laser pulses,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 65–71 (2010).
[Crossref]

C.-S. Yang, C.-J. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B 27(9), 1866–1873 (2010).
[Crossref]

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

Peng, X.-Y.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Que, C. T.

Reekie, L.

S. F. Zhou, L. Reekie, Y. T. Chow, H. P. Chan, and K. M. Luk, “Phase-shifted fiber Bragg gratings for terahertz range,” IEEE Photonics Technol. Lett. 24(20), 1875–1877 (2012).
[Crossref]

Saha, A.

Sergan, T. A.

Shen, C.-H.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Shen, J.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Shieh, J.-M.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Silva, J. R. G.

Spinu, C. L.

Surdej, J.

Tang, T.-T.

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

Tani, M.

Wada, O.

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Wang, D.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Wang, G.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Wang, H.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Wang, X.-H.

Wei, L.

Wu, W.-T.

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

Xia, L.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Yamamoto, K.

Yang, C.-S.

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

C.-S. Yang, C.-J. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B 27(9), 1866–1873 (2010).
[Crossref]

Yang, J.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Yu, P.

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

Zhang, B.

Zhang, W.

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Zhou, S. F.

S. F. Zhou, L. Reekie, Y. T. Chow, H. P. Chan, and K. M. Luk, “Phase-shifted fiber Bragg gratings for terahertz range,” IEEE Photonics Technol. Lett. 24(20), 1875–1877 (2012).
[Crossref]

AIP Adv. (1)

B. Lu, H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, “A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure,” AIP Adv. 6(2), 025215 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22(8), 386–388 (1973).
[Crossref]

C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Appl. Phys. Lett. 104(14), 141106 (2014).
[Crossref]

Appl. Sci. (Basel) (1)

C.-S. Yang, C. Kuo, P.-H. Chen, W.-T. Wu, R.-P. Pan, P. Yu, and C.-L. Pan, “High-transmittance 2π electrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals,” Appl. Sci. (Basel) 9(2), 271 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron. 49(8), 677–690 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. F. Zhou, L. Reekie, Y. T. Chow, H. P. Chan, and K. M. Luk, “Phase-shifted fiber Bragg gratings for terahertz range,” IEEE Photonics Technol. Lett. 24(20), 1875–1877 (2012).
[Crossref]

J. Appl. Phys. (1)

D. M. Mittleman, “Perspective: terahertz science and technology,”' J. Appl. Phys. 122(23), 230901 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

R.-P. Pan, C.-W. Lai, C.-J. Lin, C.-F. Hsieh, and C.-L. Pan, “Achromatic liquid crystal phase plate for short laser pulses,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 527(1), 65–71 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Other (3)

C.-S. Yang, C. Kuo, C.-C. Tang, J. C. Chen, R.-P. Pan, and C.-L. Pan, “Liquid-crystal terahertz quarter-wave plate using chemical-vapor-deposited graphene electrodes,” IEEE Photon. J. 7(6), Article#: 2200808 (2015).

P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals”, 2nd ed. (Oxford, New York, 1983), Chap. 3.

C.-L. Pan, C.-J. Lin, C.-S. Yang, W.-T. Wu, and R.-P. Pan, “Liquid-Crystal-Based Phase Gratings and Beam Steerers,” Chapter 10, in “Liquid Crystals - Recent Advancements in Fundamental and Device Technologies,” InTech Open, London, UK (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The LC-based achromatic wave plate has three elements, A, B and C. Each tunable retarder (TR) consists of a pair of rotatable permanent magnets and a homeotropically aligned LC cell. The FP and RA represent polarizer with fixed angle at −75° and rotating analyzer, respectively. Thicknesses of LC layers in TRA, TRB and TRC were dA = 2.56 mm, dB = 3.86 mm, and dC = 2.56 mm, respectively.
Fig. 2
Fig. 2 The temporal waveforms of the THz pulse transmitted through the tunable achromatic quarter wave plate with the E7 layer aligned at magnetic inclination angle θ = 0° with different rotating angles ϕ are shown together. Here we just show the temporal waveforms at ϕ = 0°, 30°, 60°, 90°, 120°, 150°, and 180°.
Fig. 3
Fig. 3 The transmittance values with different ϕ (when θ = 0°) are drawn together with theoretic prediction at frequency of 0.44 THz.
Fig. 4
Fig. 4 The phase retardation of this device is about 90° from 0.20 to 0.50 THz, when θ = 0°.
Fig. 5
Fig. 5 The phase retardation of this device is about 90° from 0.30 to 0.70 THz, when θ = 30°.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J i ( Γ i , ψ i )=R( cosψ sinψ sinψ cosψ )( e iΓ/2 0 0 e iΓ/2 )R( cosψ sinψ sinψ cosψ ) =[ cos Γ i 2 icos2 ψ i sin Γ i 2 isin2 ψ i sin Γ i 2 isin2 ψ i sin Γ i 2 cos Γ i 2 +icos2 ψ i sin Γ i 2 ]
J= i J i =[ A B B* A* ],
tan 2 Γ 2 = | ImA | 2 + | ImB | 2 | ReA | 2 + | ReB | 2
Γ i (θ)= 0 d 2πf c Δ n i (θ,z)dz ,
Γ i (θ)=2πd f c { [ cos 2 (θ) n e 2 + sin 2 (θ) n o 2 ] 1 2 n o },
E final (ϕ)=[ 1 0 0 0 ][ cos 2 ϕ sinϕcosϕ sinϕcosϕ sin 2 ϕ ][ cos Γ 2 icos2ψsin Γ 2 isin2ψsin Γ 2 isin2ψsin Γ 2 cos Γ 2 +icos2ψsin Γ 2 ] [ cos 2 15° sin15°cos15° sin15°cos15° sin 2 15° ][ 1 0 ]

Metrics