Abstract

We report on a laser frequency sweep linearization method by iterative learning pre-distortion for frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR) systems. A pre-distorted laser drive voltage waveform that results in a linear frequency sweep is obtained by an iterative learning controller, and then applied to the FMCW LiDAR system. We have also derived a fundamental figure of merit for the maximum residual nonlinearity needed to achieve the transform-limited range resolution. This method is experimentally tested using a commercial vertical cavity surface-emitting laser (VCSEL) and a distributed feedback (DFB) laser, achieving less than 0.005% relative residual nonlinearity of frequency sweep. With the proposed method, high-performance FMCW LiDAR systems can be realized without expensive linear lasers, complex linearization setups, or heavy post-processing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source

Jie Qin, Ling Zhang, Weilin Xie, Ran Cheng, Zhangweiyi Liu, Wei Wei, and Yi Dong
Opt. Express 27(14) 19359-19368 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and B. E. Boser, “Lidar system architectures and circuits,” IEEE Commun. Mag. 55(10), 135–142 (2017).
    [Crossref]
  2. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  3. E. W. Mitchell, M. S. Hoehler, F. R. Giorgetta, T. Hayden, G. B. Rieker, N. R. Newbury, and E. Baumann, “Coherent laser ranging for precision imaging through flames,” Optica 5(8), 988–995 (2018).
    [Crossref]
  4. C. V. Poulton, D. B. Cole, A. Yaacobi, and M. R. Watts, “Frequency-modulated continuous-wave LIDAR module in silicon photonics,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper W4E.3.
    [Crossref]
  5. C. J. Karlsson and F. Å. A. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt. 38(15), 3376–3386 (1999).
    [Crossref] [PubMed]
  6. L. Qiao, D. Sun, X. Zhang, and Y. Zhao, “Linearity requirement for a linear frequency modulation lidar,” Opt. Rev. 6(2), 160–162 (1999).
    [Crossref]
  7. T. J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt. 44(35), 7630–7634 (2005).
    [Crossref] [PubMed]
  8. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H. C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
    [Crossref] [PubMed]
  9. P. A. M. Sandborn, T. Hariyama, and M. C. Wu, “Resolution-enhancement for wide-range non-linear FMCW lidar using quasi-synchronous resampling,” in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper DW3F.3.
  10. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [Crossref] [PubMed]
  11. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
    [Crossref] [PubMed]
  12. B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).
  13. Z. Xu, L. Tang, H. Zhang, and S. Pan, “Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar,” IEEE Photonic. Tech. L. 29(24), 2254–2257 (2017).
    [Crossref]
  14. F. Wei, B. Lu, J. Wang, D. Xu, Z. Pan, D. Chen, H. Cai, and R. Qu, “Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking,” Opt. Express 23(4), 4970–4980 (2015).
    [Crossref] [PubMed]
  15. S. Wang, X. Fan, B. Wang, G. Yang, and Z. He, “Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications,” Opt. Express 25(9), 10224–10233 (2017).
    [Crossref] [PubMed]
  16. J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
    [Crossref]
  17. W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
    [Crossref]
  18. J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE T. Microw. Theory 64(9), 2778–2789 (2016).
    [Crossref]
  19. R. N. Braithwaite, “Digital predistortion of an RF power amplifier using a reduced volterra series model with a memory polynomial estimator,” IEEE T. Microw. Theory 65(10), 3613–3623 (2017).
    [Crossref]
  20. M. Minissale, T. Zanon-Willette, I. Prokhorov, H. Elandaloussi, and C. Janssen, “Nonlinear frequency-sweep correction of tunable electromagnetic sources,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(8), 1487–1491 (2018).
    [Crossref] [PubMed]
  21. H. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE T. Syst. Man. Cy. C 37(6), 1099–1121 (2007).
    [Crossref]
  22. D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Contr. Syst. Mag. 26(3), 96–114 (2006).
    [Crossref]
  23. H. Ahn, K. L. Moore, and Y. Chen, Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems (Springer Science & Business Media, 2007).
  24. R. J. Pieper, “Laboratory and computer tests for Carson’s FM bandwidth rule,” in Proceedings of the 33rd Southeastern Symposium on System Theory (IEEE, 2001), pp. 145–149.
    [Crossref]
  25. L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. Appl. 34(3), 597–605 (1998).
    [Crossref]
  26. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
    [Crossref] [PubMed]
  27. R. H. Myers, Classical and Modern Regression with Applications (PWS Publishers, 1986), Chap. 2.
  28. D. C. Montgomery, Applied Statistics and Probability for Engineers (John Wiley & Sons, Inc., 2003), Appendix A.
  29. C. Boucheny and A. Ribes, “Eye-dome lighting: a non-photorealistic shading technique,” Kitware Source Quarterly Magazine 17 (Kitware Blog, 2011). https://blog.kitware.com/eye-dome-lighting-a-non-photorealistic-shading-technique/ .

2018 (3)

E. W. Mitchell, M. S. Hoehler, F. R. Giorgetta, T. Hayden, G. B. Rieker, N. R. Newbury, and E. Baumann, “Coherent laser ranging for precision imaging through flames,” Optica 5(8), 988–995 (2018).
[Crossref]

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

M. Minissale, T. Zanon-Willette, I. Prokhorov, H. Elandaloussi, and C. Janssen, “Nonlinear frequency-sweep correction of tunable electromagnetic sources,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(8), 1487–1491 (2018).
[Crossref] [PubMed]

2017 (6)

S. Wang, X. Fan, B. Wang, G. Yang, and Z. He, “Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications,” Opt. Express 25(9), 10224–10233 (2017).
[Crossref] [PubMed]

B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and B. E. Boser, “Lidar system architectures and circuits,” IEEE Commun. Mag. 55(10), 135–142 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

Z. Xu, L. Tang, H. Zhang, and S. Pan, “Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar,” IEEE Photonic. Tech. L. 29(24), 2254–2257 (2017).
[Crossref]

R. N. Braithwaite, “Digital predistortion of an RF power amplifier using a reduced volterra series model with a memory polynomial estimator,” IEEE T. Microw. Theory 65(10), 3613–3623 (2017).
[Crossref]

2016 (2)

Z. Wang, B. Potsaid, L. Chen, C. Doerr, H. C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
[Crossref] [PubMed]

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE T. Microw. Theory 64(9), 2778–2789 (2016).
[Crossref]

2015 (1)

2013 (1)

2009 (2)

2007 (1)

H. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE T. Syst. Man. Cy. C 37(6), 1099–1121 (2007).
[Crossref]

2006 (1)

D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Contr. Syst. Mag. 26(3), 96–114 (2006).
[Crossref]

2005 (1)

1999 (2)

1998 (1)

L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. Appl. 34(3), 597–605 (1998).
[Crossref]

Ahn, H.

H. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE T. Syst. Man. Cy. C 37(6), 1099–1121 (2007).
[Crossref]

Ahn, T. J.

Alleyne, A. G.

D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Contr. Syst. Mag. 26(3), 96–114 (2006).
[Crossref]

Babbitt, W. R.

Barber, Z. W.

Baumann, E.

Behroozpour, B.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and B. E. Boser, “Lidar system architectures and circuits,” IEEE Commun. Mag. 55(10), 135–142 (2017).
[Crossref]

Berg, T.

Boser, B. E.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and B. E. Boser, “Lidar system architectures and circuits,” IEEE Commun. Mag. 55(10), 135–142 (2017).
[Crossref]

Braithwaite, R. N.

R. N. Braithwaite, “Digital predistortion of an RF power amplifier using a reduced volterra series model with a memory polynomial estimator,” IEEE T. Microw. Theory 65(10), 3613–3623 (2017).
[Crossref]

Bristow, D. A.

D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Contr. Syst. Mag. 26(3), 96–114 (2006).
[Crossref]

Byrd, M. J.

Cable, A. E.

Cai, H.

Chang, G.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
[Crossref]

Chani-Cahuana, J.

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE T. Microw. Theory 64(9), 2778–2789 (2016).
[Crossref]

Chen, D.

Chen, L.

Z. Wang, B. Potsaid, L. Chen, C. Doerr, H. C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
[Crossref] [PubMed]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
[Crossref]

Chen, Y.

H. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE T. Syst. Man. Cy. C 37(6), 1099–1121 (2007).
[Crossref]

Coddington, I.

Cole, D. B.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

C. V. Poulton, D. B. Cole, A. Yaacobi, and M. R. Watts, “Frequency-modulated continuous-wave LIDAR module in silicon photonics,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper W4E.3.
[Crossref]

Doerr, C.

Elandaloussi, H.

M. Minissale, T. Zanon-Willette, I. Prokhorov, H. Elandaloussi, and C. Janssen, “Nonlinear frequency-sweep correction of tunable electromagnetic sources,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(8), 1487–1491 (2018).
[Crossref] [PubMed]

Enjeti, P. N.

L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. Appl. 34(3), 597–605 (1998).
[Crossref]

Eriksson, T.

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE T. Microw. Theory 64(9), 2778–2789 (2016).
[Crossref]

Fager, C.

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE T. Microw. Theory 64(9), 2778–2789 (2016).
[Crossref]

Fan, X.

Fujimoto, J. G.

Ghassemlooy, Z.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Giorgetta, F. R.

Han, D.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Hayden, T.

He, Z.

Hoehler, M. S.

Janssen, C.

M. Minissale, T. Zanon-Willette, I. Prokhorov, H. Elandaloussi, and C. Janssen, “Nonlinear frequency-sweep correction of tunable electromagnetic sources,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(8), 1487–1491 (2018).
[Crossref] [PubMed]

Jayaraman, V.

Karlsson, C. J.

Kaylor, B.

Kim, D. Y.

Knabe, K.

Landin, P. N.

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE T. Microw. Theory 64(9), 2778–2789 (2016).
[Crossref]

Laskai, L.

L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. Appl. 34(3), 597–605 (1998).
[Crossref]

Lee, H. C.

Lee, J. Y.

Leyva, V.

Lu, B.

Lu, F.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
[Crossref]

Luo, P.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Matsui, Y.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

Minissale, M.

M. Minissale, T. Zanon-Willette, I. Prokhorov, H. Elandaloussi, and C. Janssen, “Nonlinear frequency-sweep correction of tunable electromagnetic sources,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(8), 1487–1491 (2018).
[Crossref] [PubMed]

Mitchell, E. W.

Moore, K. L.

H. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE T. Syst. Man. Cy. C 37(6), 1099–1121 (2007).
[Crossref]

Newbury, N. R.

Nielson, T.

Olsson, F. Å. A.

Pan, S.

Z. Xu, L. Tang, H. Zhang, and S. Pan, “Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar,” IEEE Photonic. Tech. L. 29(24), 2254–2257 (2017).
[Crossref]

Pan, Z.

Pieper, R. J.

R. J. Pieper, “Laboratory and computer tests for Carson’s FM bandwidth rule,” in Proceedings of the 33rd Southeastern Symposium on System Theory (IEEE, 2001), pp. 145–149.
[Crossref]

Pitel, I. J.

L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. Appl. 34(3), 597–605 (1998).
[Crossref]

Potsaid, B.

Poulton, C. V.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

C. V. Poulton, D. B. Cole, A. Yaacobi, and M. R. Watts, “Frequency-modulated continuous-wave LIDAR module in silicon photonics,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper W4E.3.
[Crossref]

Prokhorov, I.

M. Minissale, T. Zanon-Willette, I. Prokhorov, H. Elandaloussi, and C. Janssen, “Nonlinear frequency-sweep correction of tunable electromagnetic sources,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(8), 1487–1491 (2018).
[Crossref] [PubMed]

Qiao, L.

L. Qiao, D. Sun, X. Zhang, and Y. Zhao, “Linearity requirement for a linear frequency modulation lidar,” Opt. Rev. 6(2), 160–162 (1999).
[Crossref]

Qu, R.

Quack, N.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

Rakuljic, G.

Raval, M.

Reibel, R. R.

Rieker, G. B.

Roos, P. A.

Sandborn, P. A. M.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and B. E. Boser, “Lidar system architectures and circuits,” IEEE Commun. Mag. 55(10), 135–142 (2017).
[Crossref]

Satyan, N.

Seok, T.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

Sinclair, L. C.

Sun, D.

L. Qiao, D. Sun, X. Zhang, and Y. Zhao, “Linearity requirement for a linear frequency modulation lidar,” Opt. Rev. 6(2), 160–162 (1999).
[Crossref]

Swann, W. C.

Swanson, E.

Tang, L.

Z. Xu, L. Tang, H. Zhang, and S. Pan, “Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar,” IEEE Photonic. Tech. L. 29(24), 2254–2257 (2017).
[Crossref]

Tharayil, M.

D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Contr. Syst. Mag. 26(3), 96–114 (2006).
[Crossref]

Vasilyev, A.

Vermeulen, D.

Wang, B.

Wang, J.

F. Wei, B. Lu, J. Wang, D. Xu, Z. Pan, D. Chen, H. Cai, and R. Qu, “Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking,” Opt. Express 23(4), 4970–4980 (2015).
[Crossref] [PubMed]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
[Crossref]

Wang, S.

Wang, Z.

Watts, M. R.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

C. V. Poulton, D. B. Cole, A. Yaacobi, and M. R. Watts, “Frequency-modulated continuous-wave LIDAR module in silicon photonics,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper W4E.3.
[Crossref]

Wei, F.

Wu, M. C.

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and B. E. Boser, “Lidar system architectures and circuits,” IEEE Commun. Mag. 55(10), 135–142 (2017).
[Crossref]

Xu, D.

Xu, M.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
[Crossref]

Xu, W.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Xu, Z.

Z. Xu, L. Tang, H. Zhang, and S. Pan, “Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar,” IEEE Photonic. Tech. L. 29(24), 2254–2257 (2017).
[Crossref]

Yaacobi, A.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

C. V. Poulton, D. B. Cole, A. Yaacobi, and M. R. Watts, “Frequency-modulated continuous-wave LIDAR module in silicon photonics,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper W4E.3.
[Crossref]

Yang, G.

Yariv, A.

Yu, J.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
[Crossref]

Zanon-Willette, T.

M. Minissale, T. Zanon-Willette, I. Prokhorov, H. Elandaloussi, and C. Janssen, “Nonlinear frequency-sweep correction of tunable electromagnetic sources,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(8), 1487–1491 (2018).
[Crossref] [PubMed]

Zhang, H.

Z. Xu, L. Tang, H. Zhang, and S. Pan, “Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar,” IEEE Photonic. Tech. L. 29(24), 2254–2257 (2017).
[Crossref]

Zhang, J.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
[Crossref]

Zhang, M.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Zhang, X.

L. Qiao, D. Sun, X. Zhang, and Y. Zhao, “Linearity requirement for a linear frequency modulation lidar,” Opt. Rev. 6(2), 160–162 (1999).
[Crossref]

Zhang, Y.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Zhao, Y.

L. Qiao, D. Sun, X. Zhang, and Y. Zhao, “Linearity requirement for a linear frequency modulation lidar,” Opt. Rev. 6(2), 160–162 (1999).
[Crossref]

Appl. Opt. (2)

IEEE Commun. Mag. (1)

B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and B. E. Boser, “Lidar system architectures and circuits,” IEEE Commun. Mag. 55(10), 135–142 (2017).
[Crossref]

IEEE Contr. Syst. Mag. (1)

D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Contr. Syst. Mag. 26(3), 96–114 (2006).
[Crossref]

IEEE J. of Solid-St. Circulation (1)

B. Behroozpour, P. A. M. Sandborn, N. Quack, T. Seok, Y. Matsui, M. C. Wu, and B. E. Boser, “Electronic-photonic integrated circuit for 3D microimaging,” IEEE J. of Solid-St. Circulation 52(1), 161–172 (2017).

IEEE Photonic. Tech. L. (1)

Z. Xu, L. Tang, H. Zhang, and S. Pan, “Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar,” IEEE Photonic. Tech. L. 29(24), 2254–2257 (2017).
[Crossref]

IEEE Photonics J. (1)

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

IEEE T. Microw. Theory (2)

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE T. Microw. Theory 64(9), 2778–2789 (2016).
[Crossref]

R. N. Braithwaite, “Digital predistortion of an RF power amplifier using a reduced volterra series model with a memory polynomial estimator,” IEEE T. Microw. Theory 65(10), 3613–3623 (2017).
[Crossref]

IEEE T. Syst. Man. Cy. C (1)

H. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE T. Syst. Man. Cy. C 37(6), 1099–1121 (2007).
[Crossref]

IEEE Trans. Ind. Appl. (1)

L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. Appl. 34(3), 597–605 (1998).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Minissale, T. Zanon-Willette, I. Prokhorov, H. Elandaloussi, and C. Janssen, “Nonlinear frequency-sweep correction of tunable electromagnetic sources,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(8), 1487–1491 (2018).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opt. Rev. (1)

L. Qiao, D. Sun, X. Zhang, and Y. Zhao, “Linearity requirement for a linear frequency modulation lidar,” Opt. Rev. 6(2), 160–162 (1999).
[Crossref]

Optica (2)

Other (8)

C. V. Poulton, D. B. Cole, A. Yaacobi, and M. R. Watts, “Frequency-modulated continuous-wave LIDAR module in silicon photonics,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper W4E.3.
[Crossref]

P. A. M. Sandborn, T. Hariyama, and M. C. Wu, “Resolution-enhancement for wide-range non-linear FMCW lidar using quasi-synchronous resampling,” in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper DW3F.3.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proceedings of IEEE Optical Fiber Communications Conference and Exhibition (IEEE, 2016), paper TU2B.3.
[Crossref]

R. H. Myers, Classical and Modern Regression with Applications (PWS Publishers, 1986), Chap. 2.

D. C. Montgomery, Applied Statistics and Probability for Engineers (John Wiley & Sons, Inc., 2003), Appendix A.

C. Boucheny and A. Ribes, “Eye-dome lighting: a non-photorealistic shading technique,” Kitware Source Quarterly Magazine 17 (Kitware Blog, 2011). https://blog.kitware.com/eye-dome-lighting-a-non-photorealistic-shading-technique/ .

H. Ahn, K. L. Moore, and Y. Chen, Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems (Springer Science & Business Media, 2007).

R. J. Pieper, “Laboratory and computer tests for Carson’s FM bandwidth rule,” in Proceedings of the 33rd Southeastern Symposium on System Theory (IEEE, 2001), pp. 145–149.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of ILC pre-distortion of laser frequency sweep linearization. (a) Block diagram of the ILC process. (b) Detailed setup for laser frequency sweep measurement.
Fig. 2
Fig. 2 (a) Schematic of an FMCW LiDAR. The drive voltage ud(t) obtained by the ILC pre-distorter is applied to the laser. (b) The variation of optical frequency versus time for the reference and probe light paths with a Doppler frequency shift due to target motion.
Fig. 3
Fig. 3 Experimental results of laser frequency sweep linearization of VCSEL by ILC. (a) residual nonlinearity versus the number of iterations. (b) Laser frequency sweep and the corresponding drive voltage waveforms at the 256th iteration. The ROI is labeled by red color. (c), (d) The down- and up-ramp laser frequency sweeps and residual errors in the ROIs of the 256th iteration. (e), (f) The down- and up-ramp laser frequency sweeps and residual errors of the 1st iteration for comparison.
Fig. 4
Fig. 4 Experimental results of linearized VCSEL frequency sweeps and residual errors of (a) down and (b) up ramps by ILC for 163 GHz frequency excursion.
Fig. 5
Fig. 5 Stability of laser frequency sweep linearity in 2 hours.
Fig. 6
Fig. 6 Experimental results of linearized DFB laser frequency sweeps and residual errors of (a) down and (b) up ramps by ILC for 36 GHz frequency excursion.
Fig. 7
Fig. 7 Residual nonlinearity of the up-ramp of the DFB laser versus the number of iterations for various values of the p coefficient.
Fig. 8
Fig. 8 Single point FMCW LiDAR ranging results. (a) Beat signal spectra during the up- and down-ramp of the frequency sweep. (b) Stationary target distance measurement results over 100 mm stage displacement with 0.25 mm step. The down-ramp results are artificially offset by 10 mm for clarity. (c) Target velocity measurement results over ± 20 mm/s range with 1 mm/s step.
Fig. 9
Fig. 9 3D imaging using the FMCW LiDAR. (a) Camera image of the scene (not in the same view angle of LiDAR). (b), (c) Measured 3D point clouds (same point cloud in two view angles) visualized by CloudCompare software with eye-dome lighting [29]. The color of the points represents depth.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δD=c δ f b / ( 2γ ) ,
V t = λ f Doppler /2 = λ( f b,down f b,up )/4 ,
φ b ( t )=2π τ t ν( t )=2π τ t [ ν 0 +γt+ ν nl ( t ) ]=2πγ τ t t+2π τ t ν nl ( t )+2π τ t ν 0 .
δ f b =2( 1+β ) f m ,
δ f b = ( 1+2π τ t ν nl,rms )/ T ramp .
δD= c( 1+2π τ t ν nl,rms )/ ( 2Δν ) .
δD=c/ ( 2Δν ) ,
δD/D = 2πc τ t ν nl,rms / ( 2DΔν ) =2π( ν nl,rms / Δν ).
δD/D =2π( ν nl,rms / Δν )=2π [ ( 1 r 2 )/ 12 ] 1/2 .

Metrics