Abstract

The propagation of 355-nm, nanosecond pulses in absorbing glasses is investigated for the specific case examples of the broadband absorbing glass SuperGrey and the Ce3+-doped silica glass. The study involves different laser irradiation conditions and material characterization methods to capture the transient material behaviors leading to laser-induced damage. Two damage-initiation mechanisms were identified: (1) melting of the surface as a result of increased temperature; and (2) self-focusing caused by a transient change in the index of refraction. Population of excited states greatly affects both mechanisms by increasing the transient absorption cross section via excited-state absorption and introducing a change of the refractive index to support the formation of graded-index lensing and self-focusing of the beam inside the material. The governing damage-initiation mechanism depends on the thermodynamic properties of the host glass, the electronic structure characteristics of the doped ion, and the laser-spot size.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm

Arlee V. Smith and Binh T. Do
Appl. Opt. 47(26) 4812-4832 (2008)

Direct observation of structure-assisted filament splitting during ultrafast multiple-pulse laser ablation

Feifei Wang, Changji Pan, Jingya Sun, Qingsong Wang, Yongfeng Lu, and Lan Jiang
Opt. Express 27(7) 10050-10057 (2019)

Nanosecond UV laser-induced fatigue effects in the bulk of synthetic fused silica: a multi-parameter study

Céline Gouldieff, Frank Wagner, and Jean-Yves Natoli
Opt. Express 23(3) 2962-2972 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015), doi:.
    [Crossref]
  2. R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10,642–10,649 (2010), doi:.
    [Crossref]
  3. Yu. A. Demochko, I. F. Usol’tsev, and V. M. Shaposhnikov, “Influence of optical absorption on the laser damage threshold of glasses,” Sov. J. Quantum Electron. 9(12), 1556 (1979). https://iopscience.iop.org/article/10.1070/QE1979v009n12ABEH009914
    [Crossref]
  4. R. A. Miller and N. F. Borrelli, “Damage in glass induced by linear absorption of laser radiation,” Appl. Opt. 6(1), 164–165 (1967), doi:.
    [Crossref]
  5. P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
    [Crossref]
  6. J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .
  7. S. G. Demos, P. R. Ehrmann, S. R. Qiu, K. I. Schaffers, and T. I. Suratwala, “Dynamics of defects in Ce3+ doped silica affecting its performance as protective filter in ultraviolet high-power lasers,” Opt. Express 22(23), 28798–28809 (2014), doi:.
    [Crossref]
  8. R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: Exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011), doi:.
    [Crossref]
  9. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
    [Crossref]
  10. E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98(21), 216101 (2007), doi:.
    [Crossref]
  11. C. G. Peters, “Measurements of the index of refraction of glass at high temperatures,” in Scientific Papers of the Bureau of Standards, Scientific Papers of the Bureau of Standards, s521 (U.S. Government Printing Office, Washington, DC, 1926), Vol. 20, pp. 635–659.
  12. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983), doi:.
    [Crossref]
  13. T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980), doi:.
    [Crossref]
  14. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack–Hartmann wave-front sensor,” Appl. Opt. 40(3), 366–374 (2001), doi:.
    [Crossref]
  15. A. Kubota, M.-J. Caturla, J. S. Stölken, and M. D. Feit, “Densification of fused silica due to shock waves and its amplifications for 351 nm laser induced damage,” Opt. Express 8(11), 611–616 (2001), doi:.
    [Crossref]
  16. R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Index-of-refraction change in optically pumped solid-state laser materials,” Opt. Lett. 14(21), 1204–1206 (1989), doi:.
    [Crossref]
  17. J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B Condens. Matter Mater. Phys. 74(23), 235108 (2006), doi:.
    [Crossref]
  18. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
    [Crossref]
  19. O. L. Antipov, A. S. Kuzhelev, D. V. Chausov, and A. P. Zinov’ev, “Dynamics of refractive-index changes in a Nd:YAG laser crystal under excitation of Nd3+ ions,” J. Opt. Soc. Am. B 16(7), 1072–1079 (1999), doi:.
    [Crossref]
  20. A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express 16(17), 12,658–12,663 (2008), doi:.
    [Crossref]
  21. H. Garcia, A. M. Johnson, F. A. Oguama, and S. Trivedi, “Pump-induced nonlinear refractive-index change in erbium- and ytterbium-doped fibers: Theory and experiment,” Opt. Lett. 30(11), 1261–1263 (2005), doi:.
    [Crossref]
  22. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997), doi:.
    [Crossref]
  23. Y. H. Kim, N. S. Kim, Y. Chung, U.-C. Paek, and W.-T. Han, “All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with a long-period fiber gratings pair,” Opt. Express 12(4), 651–656 (2004), doi:.
    [Crossref]
  24. P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
    [Crossref]
  25. S. G. Demos, P. R. Ehrmann, M. A. Johnson, K. I. Schaffers, A. M. Rubenchik, and M. D. Feit, “Change of self-focusing behavior of phosphate glass resulting from exposure to ultraviolet nanosecond laser pulses,” Opt. Express 21(4), 4854–4863 (2013), doi:.
    [Crossref]
  26. R. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Amsterdam, 2008).

2015 (1)

2014 (1)

2013 (1)

2011 (2)

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: Exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011), doi:.
[Crossref]

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

2010 (2)

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10,642–10,649 (2010), doi:.
[Crossref]

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

2008 (1)

A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express 16(17), 12,658–12,663 (2008), doi:.
[Crossref]

2007 (1)

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98(21), 216101 (2007), doi:.
[Crossref]

2006 (1)

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B Condens. Matter Mater. Phys. 74(23), 235108 (2006), doi:.
[Crossref]

2005 (1)

2004 (2)

Y. H. Kim, N. S. Kim, Y. Chung, U.-C. Paek, and W.-T. Han, “All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with a long-period fiber gratings pair,” Opt. Express 12(4), 651–656 (2004), doi:.
[Crossref]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

2003 (1)

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
[Crossref]

2001 (2)

1999 (2)

O. L. Antipov, A. S. Kuzhelev, D. V. Chausov, and A. P. Zinov’ev, “Dynamics of refractive-index changes in a Nd:YAG laser crystal under excitation of Nd3+ ions,” J. Opt. Soc. Am. B 16(7), 1072–1079 (1999), doi:.
[Crossref]

P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
[Crossref]

1997 (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997), doi:.
[Crossref]

1989 (1)

1983 (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983), doi:.
[Crossref]

1980 (1)

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980), doi:.
[Crossref]

1967 (1)

Antipov, O. L.

A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express 16(17), 12,658–12,663 (2008), doi:.
[Crossref]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
[Crossref]

O. L. Antipov, A. S. Kuzhelev, D. V. Chausov, and A. P. Zinov’ev, “Dynamics of refractive-index changes in a Nd:YAG laser crystal under excitation of Nd3+ ions,” J. Opt. Soc. Am. B 16(7), 1072–1079 (1999), doi:.
[Crossref]

Auerbach, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Bletzer, K.

P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
[Crossref]

Borrelli, N. F.

Bredikhin, D. V.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
[Crossref]

Byer, R. L.

Calusi, S.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Caturla, M.-J.

Chase, L. L.

Chausov, D. V.

Chung, Y.

Clubley, D.

Demos, S. G.

Digonnet, M. J. F.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997), doi:.
[Crossref]

Ehrmann, P. R.

Eremeykin, O. N.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
[Crossref]

Feit, M. D.

Fejer, M. M.

Feng, G.-Y.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Fitz-Gerald, J. M.

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98(21), 216101 (2007), doi:.
[Crossref]

Fotiadi, A. A.

A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express 16(17), 12,658–12,663 (2008), doi:.
[Crossref]

Fu, Y.-Q.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Garcia, H.

Genin, F. Y.

P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
[Crossref]

Giuntini, L.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Gustafson, E. K.

Hackel, R. P.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Han, J. H.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Han, W.-T.

Hendrix, J. L.

P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
[Crossref]

Hennawi, J.

Hester, M.

P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
[Crossref]

Honig, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Izumitani, T.

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980), doi:.
[Crossref]

Johnson, A. M.

Johnson, M. A.

Kim, N. S.

Kim, Y. H.

Kubota, A.

Kuzhelev, A. S.

Kuznetsov, M. S.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
[Crossref]

Lagomarsino, S.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Leveugle, E.

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98(21), 216101 (2007), doi:.
[Crossref]

Lo Giudice, A.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Luthi, R. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Manes, K. R.

Mansell, J. D.

Margerie, J.

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B Condens. Matter Mater. Phys. 74(23), 235108 (2006), doi:.
[Crossref]

Massi, M.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Mégret, P.

A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express 16(17), 12,658–12,663 (2008), doi:.
[Crossref]

Miller, R. A.

Moncorgé, R.

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B Condens. Matter Mater. Phys. 74(23), 235108 (2006), doi:.
[Crossref]

Nagtegaele, P.

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B Condens. Matter Mater. Phys. 74(23), 235108 (2006), doi:.
[Crossref]

Negres, R. A.

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015), doi:.
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: Exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011), doi:.
[Crossref]

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10,642–10,649 (2010), doi:.
[Crossref]

Niu, R.-H.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Nostrand, M. C.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Oguama, F. A.

Olivero, P.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Paek, U.-C.

Pantell, R. H.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997), doi:.
[Crossref]

Payne, S. A.

Powell, R. C.

Qiu, S. R.

Raman, R. N.

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015), doi:.
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: Exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011), doi:.
[Crossref]

Reitze, D. H.

Rubenchik, A. M.

Sadowski, R. W.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997), doi:.
[Crossref]

Savikin, A. P.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
[Crossref]

Schaffers, K. I.

Sciortino, S.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Sell, W. D.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Sellinger, A.

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98(21), 216101 (2007), doi:.
[Crossref]

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997), doi:.
[Crossref]

Stanley, J. A.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Stölken, J. S.

Suratwala, T. I.

Toratani, H.

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980), doi:.
[Crossref]

Toyoda, T.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983), doi:.
[Crossref]

Trivedi, S.

Vannoni, M.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Vickers, J. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Vittone, E.

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

Vorob’ev, V. A.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
[Crossref]

Wegner, P. J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Weiland, T. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

Whitman, P. K.

P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
[Crossref]

Wilke, G. D.

Xie, X.-D.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Yabe, M.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983), doi:.
[Crossref]

Yang, L.-M.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Yoshida, S.

Yoshiyama, J. M.

P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
[Crossref]

Zhang, Q.-H.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Zhigilei, L. V.

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98(21), 216101 (2007), doi:.
[Crossref]

Zhou, S.-H.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Zhu, Q.-H.

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Zinov’ev, A. P.

Appl. Opt. (2)

Diamond Related Materials (1)

P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials 19(5), 428–431 (2010), doi:.
[Crossref]

IEEE J. Quantum Electron. (1)

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003), doi:.
[Crossref]

J. Non-Cryst. Solids (1)

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980), doi:.
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983), doi:.
[Crossref]

Opt. Eng. (1)

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: Exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011), doi:.
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol. 3(1), 44–64 (1997), doi:.
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B Condens. Matter Mater. Phys. 74(23), 235108 (2006), doi:.
[Crossref]

Phys. Rev. Lett. (1)

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98(21), 216101 (2007), doi:.
[Crossref]

Proc. SPIE (2)

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high-energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004), doi:.
[Crossref]

P. K. Whitman, K. Bletzer, J. L. Hendrix, F. Y. Genin, M. Hester, and J. M. Yoshiyama, “Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation,” Proc. SPIE 3578, 681–691 (1999), doi:.
[Crossref]

Wuli Xuebao (1)

J. H. Han, G.-Y. Feng, L.-M. Yang, Q.-H. Zhang, Y.-Q. Fu, R.-H. Niu, Q.-H. Zhu, X.-D. Xie, and S.-H. Zhou, “Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass,” Wuli Xuebao 60(2), 28106 (2011), http://wulixb.iphy.ac.cn/EN/abstract/abstract18055.shtml .

Other (3)

Yu. A. Demochko, I. F. Usol’tsev, and V. M. Shaposhnikov, “Influence of optical absorption on the laser damage threshold of glasses,” Sov. J. Quantum Electron. 9(12), 1556 (1979). https://iopscience.iop.org/article/10.1070/QE1979v009n12ABEH009914
[Crossref]

C. G. Peters, “Measurements of the index of refraction of glass at high temperatures,” in Scientific Papers of the Bureau of Standards, Scientific Papers of the Bureau of Standards, s521 (U.S. Government Printing Office, Washington, DC, 1926), Vol. 20, pp. 635–659.

R. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Amsterdam, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic layout of two of the experimental systems used in this work. The pump pulse is at 355 nm having a nearly Gaussian temporal profile with a pulse length (FWHM) of (a) 3.3 ns and (b) 8 ns. CCD: charge-coupled device.
Fig. 2
Fig. 2 The intensity cross-section profiles along the center of the laser beam obtained via relay imaging for two input laser (peak) fluences of (a) ≈2.5 J/cm2 and (b) ≈8.6 J/cm2 at different planes: (1) 2.3 mm below the input surface and (2) the output surface of a 4-mm-thick SuperGrey glass sample, i.e., (a1) and (b1), dotted lines, and (a2) and (b2), solid lines, respectively. The corresponding beam profile images are shown as insets.
Fig. 3
Fig. 3 The normalized laser beam transmittance through a 1-mm-thick Ce3+-doped silica sample as a function of peak input laser fluence. The data points shown with blue circles and red squares represent measurements on a single site of the sample while the fluence was increasing and decreasing, sequentially. The inset shows the integrated emission normalized to the laser fluence itself as a function of the laser peak fluence.
Fig. 4
Fig. 4 The transient response of the transmittance of probe pulse at 532 nm as a function of the delay time from the pump pulse on a 1-mm-thick Ce3+-doped silica sample. (a) Transient image using the 180-ps probe pulse as a strobe light for delay of 0 ns. (b) A transient image at delay of 0 ns using pump fluence above damage threshold normalized by the corresponding image at fluence just below damage threshold. The microscope is focused ~0.5 mm below the input surface. (c) The transmittance of the probe beam as a function of delay time.
Fig. 5
Fig. 5 SEM images of damage at the input surface of a 4-mm thick SuperGrey glass sample under exposure to the large area beam and fluences of about [(a),(b)] 8.9 J/cm2, [(c),(d)] 15.8 J/cm2, and [(e),(f)] 19 J/cm2.
Fig. 6
Fig. 6 Images of filamentation-induced damage in a 1-cm-thick Ce3+-doped silica sample at depths of (a) 1.25 mm, (b) 0.5 mm, and (c) 1 mm below the input surface under exposure to a fluence ≈21-J/cm2, 351-nm, 5-ns flat in time pulses. (d) The density of filament sites versus depth for laser fluences of about (1) 32 J/cm2, (2) 21 J/cm2 and (3) 11 J/cm2, respectively.

Metrics