Abstract

Orbital angular momentum (OAM) modes of electromagnetic (EM) waves have been extensively studied to obtain more than two independent channels at a single frequency. Thus far, however, multiple radiators have been used to achieve this goal in wireless communications. For the first time, a single radiator was designed to simultaneously transmit three OAM waves in free space at the same frequency. Our design makes use of the radiating resonant modes of a dielectric resonator antenna (DRA). For demonstration, a wireless communication system consisting of a pair of transmitting and receiving OAM DRAs was setup and measured. Three EM waves carrying three different signals were transmitted and received successfully, increasing the system throughput without requiring any complex signal processing algorithms. It confirms that a single radiator can wirelessly transmit more than two independent EM waves at a single frequency by using multi-OAM modes. The work is useful for the future high-speed wireless communication systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Orbital angular momentum generation method based on transformation electromagnetics

Rui Feng, Jianjia Yi, Shah Nawaz Burokur, Lei Kang, Hailin Zhang, and Douglas H. Werner
Opt. Express 26(9) 11708-11717 (2018)

Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM)

Shan Jiang, Chang Chen, Hualiang Zhang, and Weidong Chen
Opt. Express 26(5) 6466-6477 (2018)

Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum

Yingfan Meng, Jianjia Yi, Shah Nawaz Burokur, Lei Kang, Hailin Zhang, and Douglas H. Werner
Opt. Express 26(17) 22019-22029 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  3. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London, Ser. A 82(557), 560–567 (1909).
    [Crossref]
  4. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
    [Crossref]
  5. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
    [Crossref]
  6. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
    [Crossref]
  7. G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
    [Crossref]
  8. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light's Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
    [Crossref]
  9. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
    [Crossref]
  10. C. Z. Shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic communication by multiplexing orbital angular momentum,” Proc. Natl. Acad. Sci. U. S. A. 114(28), 7250–7253 (2017).
    [Crossref]
  11. H. R. Ren, X. P. Li, Q. M. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
    [Crossref]
  12. A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
    [Crossref]
  13. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across Vienna,” Proc. Natl. Acad. Sci. U. S. A. 112(46), 14197–14201 (2015).
    [Crossref]
  14. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref]
  15. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  16. N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref]
  17. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
    [Crossref]
  18. B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
    [Crossref]
  19. M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces,” Appl. Sci. 8(3), 362 (2018).
    [Crossref]
  20. M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of Orbital Angular Momentum With Metasurface at Microwave Band,” Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
    [Crossref]
  21. K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
    [Crossref]
  22. Y. Meng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22029 (2018).
    [Crossref]
  23. S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
    [Crossref]
  24. Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
    [Crossref]
  25. M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
    [Crossref]
  26. Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).
  27. L. Cheng, W. Hong, and Z.-C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
    [Crossref]
  28. J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
    [Crossref]
  29. F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
    [Crossref]
  30. F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
    [Crossref]
  31. S. L. Zheng, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015).
    [Crossref]
  32. M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular Polarized Patch Antenna Generating Orbital Angular Momentum,” Prog. Electromagn. Res. 148, 23–30 (2014).
    [Crossref]
  33. J. Ren and K. W. Leung, “Generation of High-Purity Millimeter-Wave Orbital Angular Momentum Modes Using Horn Antenna: Theory and Implementation,” arXiv preprint arXiv:1710.00035 (2017).
  34. X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
    [Crossref]
  35. J. Ren and K. W. Leung, “Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna,” Appl. Phys. Lett. 112(13), 131103 (2018).
    [Crossref]
  36. Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
    [Crossref]
  37. X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
    [Crossref]
  38. W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
    [Crossref]
  39. W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
    [Crossref]
  40. M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
    [Crossref]
  41. O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antennas Propag. 60(2), 1126–1131 (2012).
    [Crossref]
  42. N. B. Zhao, X. Y. Li, G. F. Liu, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9(12), 822–826 (2015).
    [Crossref]
  43. M. R. Andrews, P. P. Mitra, and R. deCarvalho, “Tripling the capacity of wireless communications using electromagnetic polarization,” Nature 409(6818), 316–318 (2001).
    [Crossref]
  44. S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag. 31(3), 406–412 (1983).
    [Crossref]
  45. K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, 2002).
  46. A. Petosa, Dielectric Resonator Antenna Handbook (Artech House Publishers, 2007).
  47. W. W. Li, K. W. Leung, and N. Yang, “Omnidirectional Dielectric Resonator Antenna With a Planar Feed for Circular Polarization Diversity Design,” IEEE Trans. Antennas Propag. 66(3), 1189–1197 (2018).
    [Crossref]
  48. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  49. N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref]
  50. E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
    [Crossref]
  51. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
    [Crossref]
  52. D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Inc., 1986).
  53. A. A. Kishk, Y. Yin, and A. W. Glisson, “Conical dielectric resonator antennas for wide-band applications,” IEEE Trans. Antennas Propag. 50(4), 469–474 (2002).
    [Crossref]
  54. E. Yao, S. Franke-Arnold, J. Courtial, S. Barnett, and M. Padgett, “Fourier relationship between angular position and optical orbital angular momentum,” Opt. Express 14(20), 9071–9076 (2006).
    [Crossref]
  55. L. Torner, J. P. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express 13(3), 873–881 (2005).
    [Crossref]
  56. A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
    [Crossref]
  57. C. H. K. Chin, Q. Xue, and H. Wong, “Broadband patch antenna with a folded plate pair as a differential feeding scheme,” IEEE Trans. Antennas Propag. 55(9), 2461–2467 (2007).
    [Crossref]
  58. X. S. Fang, K. W. Leung, and K. M. Luk, “Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna,” IEEE Trans. Antennas Propag. 62(10), 4945–4951 (2014).
    [Crossref]
  59. X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
    [Crossref]
  60. D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microw. Wireless Compon. Lett. 11(2), 68–70 (2001).
    [Crossref]
  61. G. N. Malheiros-Silveira, G. S. Wiederhecker, and H. E. Hernández-Figueroa, “Dielectric resonator antenna for applications in nanophotonics,” Opt. Express 21(1), 1234–1239 (2013).
    [Crossref]

2019 (1)

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

2018 (7)

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces,” Appl. Sci. 8(3), 362 (2018).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of Orbital Angular Momentum With Metasurface at Microwave Band,” Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Y. Meng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22029 (2018).
[Crossref]

J. Ren and K. W. Leung, “Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna,” Appl. Phys. Lett. 112(13), 131103 (2018).
[Crossref]

W. W. Li, K. W. Leung, and N. Yang, “Omnidirectional Dielectric Resonator Antenna With a Planar Feed for Circular Polarization Diversity Design,” IEEE Trans. Antennas Propag. 66(3), 1189–1197 (2018).
[Crossref]

2017 (5)

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

C. Z. Shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic communication by multiplexing orbital angular momentum,” Proc. Natl. Acad. Sci. U. S. A. 114(28), 7250–7253 (2017).
[Crossref]

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

2016 (6)

H. R. Ren, X. P. Li, Q. M. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
[Crossref]

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

2015 (7)

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

N. B. Zhao, X. Y. Li, G. F. Liu, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9(12), 822–826 (2015).
[Crossref]

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

S. L. Zheng, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015).
[Crossref]

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across Vienna,” Proc. Natl. Acad. Sci. U. S. A. 112(46), 14197–14201 (2015).
[Crossref]

2014 (6)

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular Polarized Patch Antenna Generating Orbital Angular Momentum,” Prog. Electromagn. Res. 148, 23–30 (2014).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

X. S. Fang, K. W. Leung, and K. M. Luk, “Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna,” IEEE Trans. Antennas Propag. 62(10), 4945–4951 (2014).
[Crossref]

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

2013 (3)

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

G. N. Malheiros-Silveira, G. S. Wiederhecker, and H. E. Hernández-Figueroa, “Dielectric resonator antenna for applications in nanophotonics,” Opt. Express 21(1), 1234–1239 (2013).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light's Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

2012 (4)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antennas Propag. 60(2), 1126–1131 (2012).
[Crossref]

2011 (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

2008 (3)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
[Crossref]

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

2007 (2)

C. H. K. Chin, Q. Xue, and H. Wong, “Broadband patch antenna with a folded plate pair as a differential feeding scheme,” IEEE Trans. Antennas Propag. 55(9), 2461–2467 (2007).
[Crossref]

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

2002 (2)

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref]

A. A. Kishk, Y. Yin, and A. W. Glisson, “Conical dielectric resonator antennas for wide-band applications,” IEEE Trans. Antennas Propag. 50(4), 469–474 (2002).
[Crossref]

2001 (2)

M. R. Andrews, P. P. Mitra, and R. deCarvalho, “Tripling the capacity of wireless communications using electromagnetic polarization,” Nature 409(6818), 316–318 (2001).
[Crossref]

D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microw. Wireless Compon. Lett. 11(2), 68–70 (2001).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

1983 (1)

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag. 31(3), 406–412 (1983).
[Crossref]

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

1909 (1)

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London, Ser. A 82(557), 560–567 (1909).
[Crossref]

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Andersson, M.

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

Andrews, M. R.

M. R. Andrews, P. P. Mitra, and R. deCarvalho, “Tripling the capacity of wireless communications using electromagnetic polarization,” Nature 409(6818), 316–318 (2001).
[Crossref]

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ashrafi, S.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Bai, X. D.

X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
[Crossref]

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Bao, C. J.

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

Barbuto, M.

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular Polarized Patch Antenna Generating Orbital Angular Momentum,” Prog. Electromagn. Res. 148, 23–30 (2014).
[Crossref]

Barnett, S.

Barnett, S. M.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light's Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Beijersbergen, M. W.

G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Berglind, E.

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

Bergman, J.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Berkhout, G. C. G.

G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
[Crossref]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Bilotti, F.

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular Polarized Patch Antenna Generating Orbital Angular Momentum,” Prog. Electromagn. Res. 148, 23–30 (2014).
[Crossref]

Björk, G.

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Brongersma, M. L.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Buller, G. S.

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

Burokur, S. N.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Y. Meng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22029 (2018).
[Crossref]

Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).

Byun, W. J.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Cai, X. L.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Cao, X.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Cao, Y. W.

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

Capasso, F.

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Carozzi, T. D.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Carrasco, S.

Chen, M. L. N.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of Orbital Angular Momentum With Metasurface at Microwave Band,” Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces,” Appl. Sci. 8(3), 362 (2018).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

Cheng, L.

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

Chi, H.

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

S. L. Zheng, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015).
[Crossref]

Chin, C. H. K.

C. H. K. Chin, Q. Xue, and H. Wong, “Broadband patch antenna with a folded plate pair as a differential feeding scheme,” IEEE Trans. Antennas Propag. 55(9), 2461–2467 (2007).
[Crossref]

Cho, Y. H.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Choi, H. D.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Coassini, P.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Courtial, J.

De Leon, I.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

de Lustrac, A.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

deCarvalho, R.

M. R. Andrews, P. P. Mitra, and R. deCarvalho, “Tripling the capacity of wireless communications using electromagnetic polarization,” Nature 409(6818), 316–318 (2001).
[Crossref]

Deslandes, D.

D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microw. Wireless Compon. Lett. 11(2), 68–70 (2001).
[Crossref]

Ding, X.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dong, R. F.

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

Dubois, M.

C. Z. Shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic communication by multiplexing orbital angular momentum,” Proc. Natl. Acad. Sci. U. S. A. 114(28), 7250–7253 (2017).
[Crossref]

Edfors, O.

O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antennas Propag. 60(2), 1126–1131 (2012).
[Crossref]

Fang, X. S.

X. S. Fang, K. W. Leung, and K. M. Luk, “Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna,” IEEE Trans. Antennas Propag. 62(10), 4945–4951 (2014).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Feng, R.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

Fickler, R.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across Vienna,” Proc. Natl. Acad. Sci. U. S. A. 112(46), 14197–14201 (2015).
[Crossref]

Fink, M.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across Vienna,” Proc. Natl. Acad. Sci. U. S. A. 112(46), 14197–14201 (2015).
[Crossref]

Franke-Arnold, S.

Gao, X.

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Geng, J. P.

X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
[Crossref]

Gibson, G.

Glisson, A. W.

A. A. Kishk, Y. Yin, and A. W. Glisson, “Conical dielectric resonator antennas for wide-band applications,” IEEE Trans. Antennas Propag. 50(4), 469–474 (2002).
[Crossref]

Gu, M.

H. R. Ren, X. P. Li, Q. M. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

Gu, W.

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Guillon, P.

D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Inc., 1986).

Handsteiner, J.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across Vienna,” Proc. Natl. Acad. Sci. U. S. A. 112(46), 14197–14201 (2015).
[Crossref]

Hao, Z.-C.

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

Hasman, E.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Hernández-Figueroa, H. E.

Hong, W.

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, S.

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Hui, X. N.

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

S. L. Zheng, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015).
[Crossref]

Ibragimov, N. H.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Istomin, Y. N.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Jack, B.

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

Jha, A. K.

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

Jiang, L. J.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces,” Appl. Sci. 8(3), 362 (2018).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of Orbital Angular Momentum With Metasurface at Microwave Band,” Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

Jiang, Z.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

Jiang, Z. H.

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

Jin, R. H.

X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
[Crossref]

Jin, X. F.

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

S. L. Zheng, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015).
[Crossref]

Johansson, A. J.

O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antennas Propag. 60(2), 1126–1131 (2012).
[Crossref]

Johnson-Morris, B.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Kahn, J. M.

N. B. Zhao, X. Y. Li, G. F. Liu, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9(12), 822–826 (2015).
[Crossref]

Kajfez, D.

D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Inc., 1986).

Kang, L.

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

Y. Meng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22029 (2018).
[Crossref]

Karimi, E.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Khamitova, R.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Kim, B. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Kim, K. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Kishk, A. A.

A. A. Kishk, Y. Yin, and A. W. Glisson, “Conical dielectric resonator antennas for wide-band applications,” IEEE Trans. Antennas Propag. 50(4), 469–474 (2002).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Krenn, M.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across Vienna,” Proc. Natl. Acad. Sci. U. S. A. 112(46), 14197–14201 (2015).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Kwiat, P. G.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light's Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

Leach, J.

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

Lee, Y. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Leung, K. W.

W. W. Li, K. W. Leung, and N. Yang, “Omnidirectional Dielectric Resonator Antenna With a Planar Feed for Circular Polarization Diversity Design,” IEEE Trans. Antennas Propag. 66(3), 1189–1197 (2018).
[Crossref]

J. Ren and K. W. Leung, “Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna,” Appl. Phys. Lett. 112(13), 131103 (2018).
[Crossref]

X. S. Fang, K. W. Leung, and K. M. Luk, “Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna,” IEEE Trans. Antennas Propag. 62(10), 4945–4951 (2014).
[Crossref]

J. Ren and K. W. Leung, “Generation of High-Purity Millimeter-Wave Orbital Angular Momentum Modes Using Horn Antenna: Theory and Implementation,” arXiv preprint arXiv:1710.00035 (2017).

K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, 2002).

Li, J. P.

X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
[Crossref]

Li, L.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

Li, W. W.

W. W. Li, K. W. Leung, and N. Yang, “Omnidirectional Dielectric Resonator Antenna With a Planar Feed for Circular Polarization Diversity Design,” IEEE Trans. Antennas Propag. 66(3), 1189–1197 (2018).
[Crossref]

Li, X. P.

H. R. Ren, X. P. Li, Q. M. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

Li, X. Y.

N. B. Zhao, X. Y. Li, G. F. Liu, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9(12), 822–826 (2015).
[Crossref]

Liang, X. L.

X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
[Crossref]

Liu, G. F.

N. B. Zhao, X. Y. Li, G. F. Liu, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9(12), 822–826 (2015).
[Crossref]

Long, S.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag. 31(3), 406–412 (1983).
[Crossref]

Lu, M.

Luk, K. M.

X. S. Fang, K. W. Leung, and K. M. Luk, “Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna,” IEEE Trans. Antennas Propag. 62(10), 4945–4951 (2014).
[Crossref]

K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, 2002).

Maguid, E.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Malheiros-Silveira, G. N.

Malik, M.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

Mari, E.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

McAllister, M.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag. 31(3), 406–412 (1983).
[Crossref]

Meng, Y.

Mitra, P. P.

M. R. Andrews, P. P. Mitra, and R. deCarvalho, “Tripling the capacity of wireless communications using electromagnetic polarization,” Nature 409(6818), 316–318 (2001).
[Crossref]

Molisch, A. F.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

O’Brien, J. L.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Oldoni, M.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Padgett, M.

Padgett, M. J.

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light's Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

Palmer, K.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Parisi, G.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Pas’ko, V.

Petosa, A.

A. Petosa, Dielectric Resonator Antenna Handbook (Artech House Publishers, 2007).

Poynting, J. H.

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London, Ser. A 82(557), 560–567 (1909).
[Crossref]

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Ratni, B.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).

Ravanelli, R. A.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Ren, H. R.

H. R. Ren, X. P. Li, Q. M. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

Ren, J.

J. Ren and K. W. Leung, “Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna,” Appl. Phys. Lett. 112(13), 131103 (2018).
[Crossref]

J. Ren and K. W. Leung, “Generation of High-Purity Millimeter-Wave Orbital Angular Momentum Modes Using Horn Antenna: Theory and Implementation,” arXiv preprint arXiv:1710.00035 (2017).

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ren, Y. X.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Romanato, F.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Sha, W. E. I.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of Orbital Angular Momentum With Metasurface at Microwave Band,” Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces,” Appl. Sci. 8(3), 362 (2018).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

Shen, L.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag. 31(3), 406–412 (1983).
[Crossref]

Shi, C. Z.

C. Z. Shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic communication by multiplexing orbital angular momentum,” Proc. Natl. Acad. Sci. U. S. A. 114(28), 7250–7253 (2017).
[Crossref]

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Sjoholm, J.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Someda, C. G.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Song, M. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Sorel, M.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Speirits, F. C.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light's Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

Spinello, F.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Strain, M. J.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Tamburini, F.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Tang, K.

Then, H.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Thide, B.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Thompson, M. G.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Torner, L.

Torres, J. P.

Toscano, A.

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular Polarized Patch Antenna Generating Orbital Angular Momentum,” Prog. Electromagn. Res. 148, 23–30 (2014).
[Crossref]

Trotta, F.

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular Polarized Patch Antenna Generating Orbital Angular Momentum,” Prog. Electromagn. Res. 148, 23–30 (2014).
[Crossref]

Tur, M.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Upham, J.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

Ursin, R.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

Vasnetsov, M.

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref]

Veksler, D.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Wang, J.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, J. W.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Wang, K.

X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
[Crossref]

Wang, Y.

C. Z. Shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic communication by multiplexing orbital angular momentum,” Proc. Natl. Acad. Sci. U. S. A. 114(28), 7250–7253 (2017).
[Crossref]

Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).

Wei, T. C.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Wei, Y.

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref]

Werner, D. H.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

Y. Meng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22029 (2018).
[Crossref]

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

Wiederhecker, G. S.

Willner, A. E.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wong, H.

C. H. K. Chin, Q. Xue, and H. Wong, “Broadband patch antenna with a folded plate pair as a differential feeding scheme,” IEEE Trans. Antennas Propag. 55(9), 2461–2467 (2007).
[Crossref]

Wu, K.

D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microw. Wireless Compon. Lett. 11(2), 68–70 (2001).
[Crossref]

Wu, Q.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Xie, G. D.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

Xu, W.

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Xue, Q.

C. H. K. Chin, Q. Xue, and H. Wong, “Broadband patch antenna with a folded plate pair as a differential feeding scheme,” IEEE Trans. Antennas Propag. 55(9), 2461–2467 (2007).
[Crossref]

Yan, Y.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, N.

W. W. Li, K. W. Leung, and N. Yang, “Omnidirectional Dielectric Resonator Antenna With a Planar Feed for Circular Polarization Diversity Design,” IEEE Trans. Antennas Propag. 66(3), 1189–1197 (2018).
[Crossref]

Yannai, M.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yao, E.

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

E. Yao, S. Franke-Arnold, J. Courtial, S. Barnett, and M. Padgett, “Fourier relationship between angular position and optical orbital angular momentum,” Opt. Express 14(20), 9071–9076 (2006).
[Crossref]

Yi, J.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

Y. Meng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum,” Opt. Express 26(17), 22019–22029 (2018).
[Crossref]

Yin, S.

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Yin, Y.

A. A. Kishk, Y. Yin, and A. W. Glisson, “Conical dielectric resonator antennas for wide-band applications,” IEEE Trans. Antennas Propag. 50(4), 469–474 (2002).
[Crossref]

Yu, N. F.

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Yu, S.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Yu, S. T.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Yuan, Y.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).

Yue, Y.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Zeilinger, A.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across Vienna,” Proc. Natl. Acad. Sci. U. S. A. 112(46), 14197–14201 (2015).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref]

Zhai, W.

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Zhang, D.

Zhang, H.

Zhang, K.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref]

Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).

Zhang, Q. M.

H. R. Ren, X. P. Li, Q. M. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

Zhang, W. T.

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

Zhang, X.

C. Z. Shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic communication by multiplexing orbital angular momentum,” Proc. Natl. Acad. Sci. U. S. A. 114(28), 7250–7253 (2017).
[Crossref]

Zhang, X. M.

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

S. L. Zheng, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015).
[Crossref]

Zhao, N. B.

N. B. Zhao, X. Y. Li, G. F. Liu, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9(12), 822–826 (2015).
[Crossref]

Zhao, Z.

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

Zheng, S. L.

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

S. L. Zheng, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015).
[Crossref]

Zhou, J.

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Zhu, D.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

Zhu, J. B.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Zhu, L.

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

Adv. Opt. Photonics (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Antennas Wirel. Propag. Lett. (1)

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of Orbital Angular Momentum With Metasurface at Microwave Band,” Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

Appl. Phys. Lett. (3)

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

J. Ren and K. W. Leung, “Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna,” Appl. Phys. Lett. 112(13), 131103 (2018).
[Crossref]

X. Gao, S. Huang, Y. Wei, W. Zhai, W. Xu, S. Yin, J. Zhou, and W. Gu, “An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification,” Appl. Phys. Lett. 105(24), 241109 (2014).
[Crossref]

Appl. Sci. (1)

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces,” Appl. Sci. 8(3), 362 (2018).
[Crossref]

IEEE Microw. Wireless Compon. Lett. (1)

D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microw. Wireless Compon. Lett. 11(2), 68–70 (2001).
[Crossref]

IEEE Trans. Antennas Propag. (8)

A. A. Kishk, Y. Yin, and A. W. Glisson, “Conical dielectric resonator antennas for wide-band applications,” IEEE Trans. Antennas Propag. 50(4), 469–474 (2002).
[Crossref]

C. H. K. Chin, Q. Xue, and H. Wong, “Broadband patch antenna with a folded plate pair as a differential feeding scheme,” IEEE Trans. Antennas Propag. 55(9), 2461–2467 (2007).
[Crossref]

X. S. Fang, K. W. Leung, and K. M. Luk, “Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna,” IEEE Trans. Antennas Propag. 62(10), 4945–4951 (2014).
[Crossref]

O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antennas Propag. 60(2), 1126–1131 (2012).
[Crossref]

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag. 31(3), 406–412 (1983).
[Crossref]

W. W. Li, K. W. Leung, and N. Yang, “Omnidirectional Dielectric Resonator Antenna With a Planar Feed for Circular Polarization Diversity Design,” IEEE Trans. Antennas Propag. 66(3), 1189–1197 (2018).
[Crossref]

S. L. Zheng, X. N. Hui, X. F. Jin, H. Chi, and X. M. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antennas Propag. 65(1), 396–400 (2017).
[Crossref]

IEEE Trans. Wireless Commun. (1)

W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, “Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study,” IEEE Trans. Wireless Commun. 16(2), 1308–1318 (2017).
[Crossref]

Light: Sci. Appl. (2)

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Sci. Appl. 3(5), e167 (2014).
[Crossref]

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

Nat. Commun. (1)

Y. Yan, G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref]

Nat. Mater. (1)

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Nat. Photonics (2)

N. B. Zhao, X. Y. Li, G. F. Liu, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9(12), 822–826 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Nat. Phys. (1)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Nature (1)

M. R. Andrews, P. P. Mitra, and R. deCarvalho, “Tripling the capacity of wireless communications using electromagnetic polarization,” Nature 409(6818), 316–318 (2001).
[Crossref]

New J. Phys. (2)

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Opt. Express (6)

Philos. Trans. R. Soc., A (1)

A. E. Willner, Y. X. Ren, G. D. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos. Trans. R. Soc., A 375(2087), 20150439 (2017).
[Crossref]

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Fourier relationship between the angle and angular momentum of entangled photons,” Phys. Rev. A 78(4), 043810 (2008).
[Crossref]

Phys. Rev. Appl. (2)

J. Yi, X. Cao, R. Feng, B. Ratni, Z. Jiang, D. Zhu, L. Zhu, A. de Lustrac, D. H. Werner, and S. N. Burokur, “All-Dielectric Transformed Material for Microwave Broadband Orbital Angular Momentum Vortex Beam,” Phys. Rev. Appl. 12(2), 024064 (2019).
[Crossref]

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

Phys. Rev. Lett. (3)

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref]

G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (3)

C. Z. Shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic communication by multiplexing orbital angular momentum,” Proc. Natl. Acad. Sci. U. S. A. 114(28), 7250–7253 (2017).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U. S. A. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across Vienna,” Proc. Natl. Acad. Sci. U. S. A. 112(46), 14197–14201 (2015).
[Crossref]

Proc. R. Soc. London, Ser. A (1)

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London, Ser. A 82(557), 560–567 (1909).
[Crossref]

Prog. Electromagn. Res. (1)

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular Polarized Patch Antenna Generating Orbital Angular Momentum,” Prog. Electromagn. Res. 148, 23–30 (2014).
[Crossref]

Radio Sci. (1)

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Sci. Rep. (3)

L. Cheng, W. Hong, and Z.-C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref]

X. D. Bai, X. L. Liang, J. P. Li, K. Wang, J. P. Geng, and R. H. Jin, “Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams,” Sci. Rep. 6(1), 27815 (2016).
[Crossref]

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref]

Science (5)

H. R. Ren, X. P. Li, Q. M. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light's Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Other (5)

D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Inc., 1986).

K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, 2002).

A. Petosa, Dielectric Resonator Antenna Handbook (Artech House Publishers, 2007).

J. Ren and K. W. Leung, “Generation of High-Purity Millimeter-Wave Orbital Angular Momentum Modes Using Horn Antenna: Theory and Implementation,” arXiv preprint arXiv:1710.00035 (2017).

Y. Wang, K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Planar Vortex Beam Generator for Circularly Polarized Incidence Based on FSS,” IEEE Trans. Antennas Propag., 1 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic and internal field of OAM DRA. (a) Schematic of OAM DRA radiating three different OAM modes of l = 1, l = –1 and l = 0 excited at Port 1, Port 2, and Port 3, respectively. (b) Photo showing the perspective view of OAM DRA prototype. (c) Photo showing the hybrid coupler printed at the bottom of OAM DRA prototype. (d) Internal H-fields of OAM DRA at the xoy-plane for OAM modes of l = +1, l = −1, and l = 0.
Fig. 2.
Fig. 2. Results of OAM DRA. The results were simulated with the software ANSYS HFSS, which is based on the finite element method. The detailed dimensions of the prototype can be found in Fig. 8 of Appendix B and Fig. 9 of Appendix C. (a-d) Simulated and measured S-parameters at the three ports. (e-g) Measured phase diagram of OAM modes with l = ±1 and l = 0. (h-j) Measured field intensity of OAM modes with l = ±1 and l = 0. (k) Measured mode purity using the spiral spectrum algorithm.
Fig. 3.
Fig. 3. Simulated vector near-field distributions of different modes at different times in one period T. (a-d) Simulated vector field distributions of mode 1 (l = +1). (a) t = 0. (b) t = T/4. (c) t = T/2. (d) t = 3T/4. (e-h) Simulated vector field distributions of mode 2 (l = –1). (e) t = 0. (f) t = T/4. (g) t = T/2. (h) t = 3T/4. (i-l) Simulated vector field distributions of mode 3 (l = 0). (i) t = 0. (j) t = T/4. (k) t = T/2. (l) t = 3T/4.
Fig. 4.
Fig. 4. Simulated axial ratios (ARs) of different modes in the φ = 0 plane.
Fig. 5.
Fig. 5. Measured radiation characteristics of OAM DRA. (a-c) Measured normalized 3D far-field radiation pattern. (d-f) Measured 2D far-field radiation pattern at different planes. (g) Measured radiator gain with mismatch included. (h) Measured total radiator efficiency with mismatch included.
Fig. 6.
Fig. 6. Measured signal-to-noise ratio (SNR) and decoding rate of wireless communication system deploying two three-port OAM radiators. (a) Communication system setup. (b) measured SNR of the OAM antenna-based commutation system. (c) Measured decoding rate using two identical three-port OAM DRAs as the transmitting and receiving radiators. (d) Measured decoding rate using two identical three-port diversity DRAs as the transmitting and receiving radiators for comparison.
Fig. 7.
Fig. 7. Photographs of experimental set up for measuring phase and field density and far field characteristics. (a)–(b) ORBIT/FR near-field measurement setup for measuring the phase and field density. (a) Measurement setup. (b) Location of OAM DRA. (c)–(d) Satimo StarLab system for measuring radiation pattern, radiator gain, and total radiator efficiency. (c) Perspective view. (d) Measurement probes and OAM DRA.
Fig. 8.
Fig. 8. Geometry of OAM DRA. (a) Perspective view. (b) Top view. (c) Side view. The dimensions of the radiator are given by Wf = 1.94 mm, L1 = 26 mm, W1 = 5 mm, L2 = 16.5 mm, W2 = 3.35 mm, L3 = 16.5 mm, W3 = 2 mm, R1 = 10.4 mm, Rg = 70 mm, r = 24 mm, Rsma_in = 0.65 mm, hsub1 = 0.76mm, hsub2 = 0.63 mm, hcop = 0.018 mm, hpin = 11 mm, h = 18 mm, and α = 135°
Fig. 9.
Fig. 9. Photo of OAM DRA prototype and feed network.
Fig. 10.
Fig. 10. Simulated results of OAM DRA. (a)–(c) Simulated phase diagram of OAM modes with l = +1, l = –1, and l = 0 at a distance of z = 330mm (3λ0). (d)–(f) Simulated field intensity of OAM modes with l = +1, l = –1, and l = 0 at a distance of z = 330mm. (g) Simulated mode purity using the spiral spectrum algorithm.
Fig. 11.
Fig. 11. Simulated far-field results of OAM DRA. (a)–(c) Simulated normalized 3D radiation patterns of OAM modes with l = +1, l = –1, and l = 0. (d)–(f) Simulated normalized 2D radiation patterns of OAM modes with l = +1, l = –1, and l = 0 at different planes. (g) Simulated radiator gain.

Metrics