Abstract

The storage and retrieval efficiency (SRE) and lifetime of optical quantum memories are two key performance indicators for scaling up quantum information processing. Here, we experimentally demonstrate a cavity-enhanced long-lived optical memory for two polarizations in a cold atomic ensemble. Using electromagnetically induced-transparency (EIT) dynamics, we demonstrate the storages of left-circularly and right-circularly polarized signal light pulses in the atoms, respectively. By making the signal and control beams collinearly pass through the atoms and storing the two polarizations of the signal light as two magnetic-field-insensitive spin waves, we achieve a long-lived (3.5 ms) memory. By placing a low-finesse optical ring cavity around the cold atoms, the coupling between the signal light and the atoms is enhanced, which leads to an increase in SRE. The presented cavity-enhanced storage shows that the SRE is ∼30%, corresponding to an intrinsic SRE of ∼45%.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient optical quantum memory with long coherence time in cold atoms

Y.-W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, and B. C. Buchler
Optica 3(1) 100-107 (2016)

Protecting a quantum memory for a photonic polarization qubit in a cold atomic ensemble by dynamical decoupling

Yuelong Wu, Lirong Chen, Zhongxiao Xu, and Hai Wang
Opt. Express 22(19) 23360-23371 (2014)

Atomic vapor quantum memory for a photonic polarization qubit

Young-Wook Cho and Yoon-Ho Kim
Opt. Express 18(25) 25786-25793 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
    [Crossref]
  2. N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
    [Crossref]
  3. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
    [Crossref]
  4. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref]
  5. S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89(1), 012301 (2014).
    [Crossref]
  6. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
    [Crossref]
  7. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [Crossref]
  8. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
    [Crossref]
  9. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
    [Crossref]
  10. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
    [Crossref]
  11. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
    [Crossref]
  12. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
    [Crossref]
  13. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid state light-matter interface at the single photon level,” Nature 456(7223), 773–777 (2008).
    [Crossref]
  14. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
    [Crossref]
  15. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
    [Crossref]
  16. G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
    [Crossref]
  17. M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
    [Crossref]
  18. Y. W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, and B. C. Buchler, “Highly efficient optical quantum memory with long coherence time in cold atoms,” Optica 3(1), 100 (2016).
    [Crossref]
  19. C. Simon, “Towards a global quantum network,” Nat. Photonics 11(11), 678–680 (2017).
    [Crossref]
  20. A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
    [Crossref]
  21. R. Zhang and X. B. Wang, “Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium,” Phys. Rev. A 94(6), 063856 (2016).
    [Crossref]
  22. A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. I. Cavity model,” Phys. Rev. A 76(3), 033804 (2007).
    [Crossref]
  23. Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
    [Crossref]
  24. P. V. Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9(1), 363 (2018).
    [Crossref]
  25. Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
    [Crossref]
  26. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
    [Crossref]
  27. D. Schraft, M. Hain, N. Lorenz, and T. Halfmann, “Stopped light at high storage efficiency in a Pr3+:Y2SiO5 crystal,” Phys. Rev. Lett. 116(7), 073602 (2016).
    [Crossref]
  28. M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
    [Crossref]
  29. M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
    [Crossref]
  30. P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
    [Crossref]
  31. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
    [Crossref]
  32. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
    [Crossref]
  33. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
    [Crossref]
  34. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
    [Crossref]
  35. R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103(23), 233602 (2009).
    [Crossref]
  36. Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
    [Crossref]
  37. X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
    [Crossref]
  38. M. Afzelius, N. Gisin, and H. de Riedmatten, “Quantum memory for photons,” Phys. Today 68(12), 42–47 (2015).
    [Crossref]
  39. Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
    [Crossref]
  40. D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
    [Crossref]

2019 (1)

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

2018 (2)

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

P. V. Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9(1), 363 (2018).
[Crossref]

2017 (1)

C. Simon, “Towards a global quantum network,” Nat. Photonics 11(11), 678–680 (2017).
[Crossref]

2016 (3)

Y. W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, and B. C. Buchler, “Highly efficient optical quantum memory with long coherence time in cold atoms,” Optica 3(1), 100 (2016).
[Crossref]

R. Zhang and X. B. Wang, “Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium,” Phys. Rev. A 94(6), 063856 (2016).
[Crossref]

D. Schraft, M. Hain, N. Lorenz, and T. Halfmann, “Stopped light at high storage efficiency in a Pr3+:Y2SiO5 crystal,” Phys. Rev. Lett. 116(7), 073602 (2016).
[Crossref]

2015 (2)

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

M. Afzelius, N. Gisin, and H. de Riedmatten, “Quantum memory for photons,” Phys. Today 68(12), 42–47 (2015).
[Crossref]

2014 (2)

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
[Crossref]

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89(1), 012301 (2014).
[Crossref]

2013 (5)

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

2012 (2)

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

2011 (4)

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

2010 (3)

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
[Crossref]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

2009 (2)

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103(23), 233602 (2009).
[Crossref]

2008 (4)

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid state light-matter interface at the single photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

2007 (3)

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. I. Cavity model,” Phys. Rev. A 76(3), 033804 (2007).
[Crossref]

2005 (2)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
[Crossref]

2003 (1)

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref]

Abruzzo, S.

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89(1), 012301 (2014).
[Crossref]

Adams, C. S.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Afzelius, M.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

M. Afzelius, N. Gisin, and H. de Riedmatten, “Quantum memory for photons,” Phys. Today 68(12), 42–47 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid state light-matter interface at the single photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

André, A.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. I. Cavity model,” Phys. Rev. A 76(3), 033804 (2007).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

Bao, X.-H.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Barato, D. P.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

Bernu, J.

Bloch, I.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Browne, D. E.

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
[Crossref]

Bruß, D.

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89(1), 012301 (2014).
[Crossref]

Buchler, B. C.

Busche, H.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Bussières, F.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Campbell, G.

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

Campbell, G. T.

Cao, M.

P. V. Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9(1), 363 (2018).
[Crossref]

Cao, M. T.

Chen, H. S.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Chen, L.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Chen, Y. C.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

Chen, Y. F.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

Chen, Y. H.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

Cho, Y. W.

Choi, K. S.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Clausen, C.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Davidson, N.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

de Riedmatten, H.

M. Afzelius, N. Gisin, and H. de Riedmatten, “Quantum memory for photons,” Phys. Today 68(12), 42–47 (2015).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid state light-matter interface at the single photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

Dietrich, P.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Du, S. W.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

Duan, L.-M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Dück, A.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

Everett, J. L.

Ferrier, A.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Garner, S. R.

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103(23), 233602 (2009).
[Crossref]

Gauguet, A.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Geng, J.

George, M.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

Gisin, N.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

M. Afzelius, N. Gisin, and H. de Riedmatten, “Quantum memory for photons,” Phys. Today 68(12), 42–47 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid state light-matter interface at the single photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Goldner, P.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

Gorshkov, A. V.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. I. Cavity model,” Phys. Rev. A 76(3), 033804 (2007).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

Gris, P. V.

P. V. Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9(1), 363 (2018).
[Crossref]

Hain, M.

D. Schraft, M. Hain, N. Lorenz, and T. Halfmann, “Stopped light at high storage efficiency in a Pr3+:Y2SiO5 crystal,” Phys. Rev. Lett. 116(7), 073602 (2016).
[Crossref]

Halfmann, T.

D. Schraft, M. Hain, N. Lorenz, and T. Halfmann, “Stopped light at high storage efficiency in a Pr3+:Y2SiO5 crystal,” Phys. Rev. Lett. 116(7), 073602 (2016).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref]

Hau, L. V.

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103(23), 233602 (2009).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref]

Hétet, G.

Higginbottom, D. B.

Hosseini, M.

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref]

Hsiao, Y. F.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Huang, K.

P. V. Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9(1), 363 (2018).
[Crossref]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref]

Hung, C. C.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Jin, J.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

Jobez, P.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
[Crossref]

Jones, M. P. A.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Kampermann, H.

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89(1), 012301 (2014).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Kröll, S.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref]

Kuhr, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

Kuzmich, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Lam, P. K.

Langford, N. K.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Laplane, C.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
[Crossref]

Laurat, J.

P. V. Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9(1), 363 (2018).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

Lee, C. H.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Lee, K. C.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Lee, M. J.

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

Li, J. F.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Li, L.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Li, Q.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref]

Li, S.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref]

Liao, K. Y.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Lin, S. X.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

Liu, N.-L.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Longdell, J. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Lorenz, N.

D. Schraft, M. Hain, N. Lorenz, and T. Halfmann, “Stopped light at high storage efficiency in a Pr3+:Y2SiO5 crystal,” Phys. Rev. Lett. 116(7), 073602 (2016).
[Crossref]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Lukin, M. D.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. I. Cavity model,” Phys. Rev. A 76(3), 033804 (2007).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Maxwell, D.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Michelberger, P.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
[Crossref]

Minár, J.

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Nunn, J.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Oblak, D.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref]

Pan, J.-W.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Peng, K.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Pritchard, J. D.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Pugatch, R.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

Reim, K. F.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Reingruber, A.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Ricken, R.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

Rippe, L.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref]

Robins, N. P.

Rudolph, T.

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
[Crossref]

Rui, J.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Sabooni, M.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

Sangouard, N.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Schnorrberger, U.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

Schraft, D.

D. Schraft, M. Hain, N. Lorenz, and T. Halfmann, “Stopped light at high storage efficiency in a Pr3+:Y2SiO5 crystal,” Phys. Rev. Lett. 116(7), 073602 (2016).
[Crossref]

Sellars, M. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Sheremet, A. S.

P. V. Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9(1), 363 (2018).
[Crossref]

Simon, C.

C. Simon, “Towards a global quantum network,” Nat. Photonics 11(11), 678–680 (2017).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid state light-matter interface at the single photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Sinclair, N.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

Slater, J. A.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

Sohler, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

Sørensen, A. S.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. I. Cavity model,” Phys. Rev. A 76(3), 033804 (2007).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

Sparkes, B. M.

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref]

Staudt, M. U.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid state light-matter interface at the single photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

Strassel, T.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Su, K. Y.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Sussman, B. J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Szwer, D. J.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Thompson, J. D.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

Tian, L.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Timoney, N.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
[Crossref]

Tittel, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

Trotzky, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

Tsai, P. J.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Usmani, I.

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Walmsley, I. A.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Wang, H.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Wang, I. C.

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

Wang, X. B.

R. Zhang and X. B. Wang, “Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium,” Phys. Rev. A 94(6), 063856 (2016).
[Crossref]

Wang, Y. F.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Weatherill, K. J.

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

Wu, Y.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Xie, C.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Xu, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Yan, H.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Yan, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Yu, I. A.

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

Zbinden, H.

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Zhang, R.

R. Zhang and X. B. Wang, “Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium,” Phys. Rev. A 94(6), 063856 (2016).
[Crossref]

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103(23), 233602 (2009).
[Crossref]

Zhang, S. C.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Zhang, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Zhao, B.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

Zhou, Y. R.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Zhu, S. L.

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Nat. Commun. (1)

P. V. Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nat. Commun. 9(1), 363 (2018).
[Crossref]

Nat. Photonics (3)

Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, and S. L. Zhu, “Efficient quantum memory for single-photonpolarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

C. Simon, “Towards a global quantum network,” Nat. Photonics 11(11), 678–680 (2017).
[Crossref]

Nat. Phys. (2)

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8(7), 517–521 (2012).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

Nature (7)

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid state light-matter interface at the single photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008).
[Crossref]

New J. Phys. (1)

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16(8), 083005 (2014).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (6)

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
[Crossref]

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89(1), 012301 (2014).
[Crossref]

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

R. Zhang and X. B. Wang, “Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium,” Phys. Rev. A 94(6), 063856 (2016).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in -type optically dense atomic media. I. Cavity model,” Phys. Rev. A 76(3), 033804 (2007).
[Crossref]

Phys. Rev. Lett. (16)

Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Conditional detection of pure quantum states of light after storage in a tm-doped waveguide,” Phys. Rev. Lett. 108(8), 083602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107(5), 053603 (2011).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110(13), 133604 (2013).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. W. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110(8), 083601 (2013).
[Crossref]

D. Maxwell, D. J. Szwer, D. P. Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110(10), 103001 (2013).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114(23), 230502 (2015).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref]

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103(23), 233602 (2009).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

D. Schraft, M. Hain, N. Lorenz, and T. Halfmann, “Stopped light at high storage efficiency in a Pr3+:Y2SiO5 crystal,” Phys. Rev. Lett. 116(7), 073602 (2016).
[Crossref]

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
[Crossref]

Phys. Today (1)

M. Afzelius, N. Gisin, and H. de Riedmatten, “Quantum memory for photons,” Phys. Today 68(12), 42–47 (2015).
[Crossref]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Overview of the experiment. (a) Illustration of the experimental setup, where $P{D_ \pm }$ and $P{D_1}$ are photodetectors, L1 and L2 are lenses with a focus length f specified in millimeters, HR1 - HR3 are highly reflecting mirrors, BS is a nonpolarizing beamsplitter, ${\lambda \mathord{\left/ {\vphantom {\lambda 4}} \right.} 4}$ and ${\lambda \mathord{\left/ {\vphantom {\lambda 2}} \right.} 2}$ are quarter- and half-wave plates, the filters are etalons, and PBS is a polarizing beamsplitter. (b) and (c) show the three-level Λ-type EIT systems for the storage of the signal light fields in a moderate magnetic field ( ${B_0} = 13.5G$ ). ${\Omega }_\textrm{C}^\textrm{ + }$ ( ${\sigma ^ + }$ ) and $\Omega _C^ -$ ( ${\sigma ^ - }$ ) denote the right-circularly and left-circularly polarized control (signal) light fields, respectively. $\Delta $ denotes the frequency splitting between the two Zeeman levels with the difference of $\delta {m_F} ={\pm} 1$ in the levels $|a \rangle$ or $|b \rangle$ . $\Delta ^{\prime}$ denotes the single-photon detuning of the EIT systems. In the presented system, we have $\Delta \approx \Delta ^{\prime}$ .
Fig. 2.
Fig. 2. EIT optical storage measurement at an OD of 12. The red dotted curve represents the input signal pulse, the black solid curve at $t = 0.4\textrm{ }\mu s$ denotes the retrieved signal light pulse, and the black solid line at $t = 0\textrm{ }\mu s$ is the light signal that is reflected by the mirror PR during the storage. The SRE is 30%.
Fig. 3.
Fig. 3. (a) Measured SREs $\eta _C^ +$ ( $\eta _C^ -$ ) and $\eta _{NC}^ +$ ( $\eta _{NC}^ -$ ) as a function of the OD for storage with and without the cavity. $\eta _C^ +$ ( $\eta _C^ -$ ) marked by red triangles (purple diamonds), $\eta _{NC}^ +$ ( $\eta _{NC}^ -$ ) by blue rectangles (green circles). (b) Cavity-enhanced factor as a function of OD.
Fig. 4.
Fig. 4. SREs $\eta _C^ \pm$ and the intrinsic SRE $\eta _C^{inc}$ as a function of the storage time $\Delta t$ . The red square and blue circle dots denote the measured $\eta _C^ +$ and $\eta _C^ -$ , respectively. The green diamonds represent the intrinsic $\eta _C^{inc}$ . The red solid, blue dashed and black dot lines indicate fits to the SREs $\eta _C^ +$ , $\eta _C^ -$ and $\eta _C^{inc}$ based on the exponential function $\eta (\Delta t) = {\eta _0}{e^{ - \Delta \textrm{t}/\tau }}$ .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η C ± ( Δ t ) = Δ t Δ t + T | ε C ± o u t ( t ) | 2 d t / 0 T | ε i n ± ( t ) | 2 d t
η N C ± ( Δ t ) = Δ t Δ t + T | ε N C ± o u t ( t ) | 2 d t / 0 T | ε i n ± ( t ) | 2 d t

Metrics