Abstract

We demonstrate a laser frequency stabilization technique for laser cooling of potassium atoms, based on saturated absorption spectroscopy in the C-Band optical telecommunication window, using ro-vibrational transitions of the acetylene molecule (12C2H2). We identified and characterized several molecular lines, which allow to address each of the potassium D2 (767 nm) and D1 (770 nm) cooling transitions, thanks to a high-power second harmonic generation (SHG) stage. We successfully used this laser system to cool the 41K isotope of potassium in a 2D-3D Magneto-Optical Traps setup.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency doubled 1534 nm laser system for potassium laser cooling

Guillaume Stern, Baptiste Allard, Martin Robert-de-Saint-Vincent, Jean-Philippe Brantut, Baptiste Battelier, Thomas Bourdel, and Philippe Bouyer.
Appl. Opt. 49(16) 3092-3095 (2010)

Versatile, high-power 460 nm laser system for Rydberg excitation of ultracold potassium

Alda Arias, Stephan Helmrich, Christoph Schweiger, Lynton Ardizzone, Graham Lochead, and Shannon Whitlock
Opt. Express 25(13) 14829-14839 (2017)

Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm

Feng-Lei Hong, Atsushi Onae, Jie Jiang, Ruixiang Guo, Hajime Inaba, Kaoru Minoshima, Thomas R. Schibli, Hirokazu Matsumoto, and Ken’ichi Nakagawa
Opt. Lett. 28(23) 2324-2326 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Bruner, A. Arie, M. A. Arbore, and M. M. Fejer, “Frequency stabilization of a diode laser at 1540 nm by locking to sub-doppler lines of potassium at 770 nm,” Appl. Opt. 37(6), 1049–1052 (1998).
    [Crossref]
  2. L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B 45(6), 065002 (2012).
    [Crossref]
  3. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
    [Crossref]
  4. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
    [Crossref]
  5. D. Voigt, E. Schilder, R. Spreeuw, and H. van Linden van den Heuvell, “Characterization of a high-power tapered semiconductor amplifier system,” Appl. Phys. B: Lasers Opt. 72(3), 279–284 (2001).
    [Crossref]
  6. R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
    [Crossref]
  7. G. Stern, B. Allard, M. R. de Saint-Vincent, J.-P. Brantut, B. Battelier, T. Bourdel, and P. Bouyer., “Frequency doubled 1534 nm laser system for potassium laser cooling,” Appl. Opt. 49(16), 3092–3095 (2010).
    [Crossref]
  8. C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
    [Crossref]
  9. R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11(14), 1709–1713 (2003).
    [Crossref]
  10. F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
    [Crossref]
  11. O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
    [Crossref]
  12. S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
    [Crossref]
  13. G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
    [Crossref]
  14. The complete details of this amplification stage is out of the scope of this paper, and will be provided in a future work.
  15. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. 13(12), 2708–2714 (1996).
    [Crossref]
  16. S. Gilbert and W. Swann, “Acetylene 12C2H2 absorption reference for 1510 nm to 1540 nm wavelength calibration,” Spec. Publ. 260, 1 (2001).
    [Crossref]
  17. S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
    [Crossref]
  18. S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
    [Crossref]
  19. T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
    [Crossref]
  20. M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
    [Crossref]
  21. Such a frequency standard is currently under development at LP2N Laboratory in Bordeaux, France (P. Bouyer and A. Hilico, private communications).
  22. L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
    [Crossref]

2017 (2)

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref]

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

2015 (1)

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

2013 (1)

G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
[Crossref]

2012 (1)

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B 45(6), 065002 (2012).
[Crossref]

2010 (1)

2009 (2)

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
[Crossref]

2008 (1)

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
[Crossref]

2007 (1)

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[Crossref]

2006 (2)

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

2003 (1)

2001 (2)

D. Voigt, E. Schilder, R. Spreeuw, and H. van Linden van den Heuvell, “Characterization of a high-power tapered semiconductor amplifier system,” Appl. Phys. B: Lasers Opt. 72(3), 279–284 (2001).
[Crossref]

S. Gilbert and W. Swann, “Acetylene 12C2H2 absorption reference for 1510 nm to 1540 nm wavelength calibration,” Spec. Publ. 260, 1 (2001).
[Crossref]

1999 (1)

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

1998 (2)

1996 (1)

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. 13(12), 2708–2714 (1996).
[Crossref]

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Aikawa, K.

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
[Crossref]

Allard, B.

Antoni-Micollier, L.

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

Arbore, M. A.

Arie, A.

Arnold, A. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[Crossref]

Aspect, A.

G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
[Crossref]

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Aveline, D. C.

Awaji, Y.

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. 13(12), 2708–2714 (1996).
[Crossref]

Barrett, B.

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

Battelier, B.

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

G. Stern, B. Allard, M. R. de Saint-Vincent, J.-P. Brantut, B. Battelier, T. Bourdel, and P. Bouyer., “Frequency doubled 1534 nm laser system for potassium laser cooling,” Appl. Opt. 49(16), 3092–3095 (2010).
[Crossref]

Bidel, Y.

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[Crossref]

Boshier, M. G.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[Crossref]

Bourdel, T.

G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
[Crossref]

G. Stern, B. Allard, M. R. de Saint-Vincent, J.-P. Brantut, B. Battelier, T. Bourdel, and P. Bouyer., “Frequency doubled 1534 nm laser system for potassium laser cooling,” Appl. Opt. 49(16), 3092–3095 (2010).
[Crossref]

Boussen, S.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[Crossref]

Bouyer, P.

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
[Crossref]

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Bouyer., P.

Brantut, J.-P.

Bresson, A.

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[Crossref]

Bruner, A.

Cadoret, M.

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

Carraz, O.

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[Crossref]

Cartaleva, S.

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

Cataliotti, F. S.

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

Charrière, R.

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

Chichet, L.

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

Condon, G.

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

Cornell, E. A.

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

de Labachelerie, M.

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. 13(12), 2708–2714 (1996).
[Crossref]

de Saint-Vincent, M. R.

Diboune, C.

Ensher, J. R.

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Falke, S.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
[Crossref]

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Fejer, M. M.

Fort, C.

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

Fouché, L.

G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
[Crossref]

Friebe, J.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
[Crossref]

Gateva, S.

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

Gilbert, S.

S. Gilbert and W. Swann, “Acetylene 12C2H2 absorption reference for 1510 nm to 1540 nm wavelength calibration,” Spec. Publ. 260, 1 (2001).
[Crossref]

Goldwin, J.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B 45(6), 065002 (2012).
[Crossref]

Gozzini, S.

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

Grosche, G.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Hänsch, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Inguscio, M.

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

Inouye, S.

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
[Crossref]

Kishimoto, T.

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
[Crossref]

Knöckel, H.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
[Crossref]

Kobayashi, J.

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
[Crossref]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Kourogi, M.

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. 13(12), 2708–2714 (1996).
[Crossref]

Landragin, A.

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

Le Coq, Y.

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Lienhart, F.

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[Crossref]

Lisdat, C.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
[Crossref]

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Lucchesini, A.

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

Lundblad, N.

Maleki, L.

Marinelli, C.

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

Marmugi, L.

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

Moron, F.

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Mudarikwa, L.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B 45(6), 065002 (2012).
[Crossref]

Nakagawa, K.

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. 13(12), 2708–2714 (1996).
[Crossref]

Noda, K.

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
[Crossref]

Nyman, R. A.

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Pahwa, K.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B 45(6), 065002 (2012).
[Crossref]

Prevedelli, M.

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

Ricci, L.

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Riedmann, M.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
[Crossref]

Sacchet, D.

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Salomon, G.

G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
[Crossref]

Schilder, E.

D. Voigt, E. Schilder, R. Spreeuw, and H. van Linden van den Heuvell, “Characterization of a high-power tapered semiconductor amplifier system,” Appl. Phys. B: Lasers Opt. 72(3), 279–284 (2001).
[Crossref]

Schnatz, H.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Spreeuw, R.

D. Voigt, E. Schilder, R. Spreeuw, and H. van Linden van den Heuvell, “Characterization of a high-power tapered semiconductor amplifier system,” Appl. Phys. B: Lasers Opt. 72(3), 279–284 (2001).
[Crossref]

Stern, G.

Swann, W.

S. Gilbert and W. Swann, “Acetylene 12C2H2 absorption reference for 1510 nm to 1540 nm wavelength calibration,” Spec. Publ. 260, 1 (2001).
[Crossref]

Thompson, R. J.

Tiemann, E.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
[Crossref]

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Tino, G. M.

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

Tsvetkov, S.

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

Tu, M.

Ueda, M.

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
[Crossref]

van Linden van den Heuvell, H.

D. Voigt, E. Schilder, R. Spreeuw, and H. van Linden van den Heuvell, “Characterization of a high-power tapered semiconductor amplifier system,” Appl. Phys. B: Lasers Opt. 72(3), 279–284 (2001).
[Crossref]

Varoquaux, G.

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Villier, B.

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Voigt, D.

D. Voigt, E. Schilder, R. Spreeuw, and H. van Linden van den Heuvell, “Characterization of a high-power tapered semiconductor amplifier system,” Appl. Phys. B: Lasers Opt. 72(3), 279–284 (2001).
[Crossref]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Wang, P.

G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
[Crossref]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[Crossref]

Zahzam, N.

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[Crossref]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

D. Voigt, E. Schilder, R. Spreeuw, and H. van Linden van den Heuvell, “Characterization of a high-power tapered semiconductor amplifier system,” Appl. Phys. B: Lasers Opt. 72(3), 279–284 (2001).
[Crossref]

EPL (1)

G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-molasses cooling of 39K to a high phase-space density,” EPL 104(6), 63002 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. 13(12), 2708–2714 (1996).
[Crossref]

J. Phys. B (1)

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B 45(6), 065002 (2012).
[Crossref]

Opt. Commun. (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Opt. Express (2)

Phys. Rev. A (5)

L. Antoni-Micollier, B. Barrett, L. Chichet, G. Condon, B. Battelier, A. Landragin, and P. Bouyer, “Generation of high-purity low-temperature samples of 39K for applications in metrology,” Phys. Rev. A 96(2), 023608 (2017).
[Crossref]

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and born-oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A 78(1), 012503 (2008).
[Crossref]

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye, “Direct evaporative cooling of 41K into a Bose-Einstein condensate,” Phys. Rev. A 79(3), 031602 (2009).
[Crossref]

M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus,” Phys. Rev. A 59(1), 886–888 (1999).
[Crossref]

Proc. SPIE (1)

S. Gozzini, A. Lucchesini, C. Marinelli, L. Marmugi, S. Gateva, S. Tsvetkov, and S. Cartaleva, “Influence of anti-relaxation coating of optical cells on the potassium D1 line saturated absorption,” Proc. SPIE 9447, 944708 (2015).
[Crossref]

Rev. Sci. Instrum. (2)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[Crossref]

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77(3), 033105 (2006).
[Crossref]

Spec. Publ. (1)

S. Gilbert and W. Swann, “Acetylene 12C2H2 absorption reference for 1510 nm to 1540 nm wavelength calibration,” Spec. Publ. 260, 1 (2001).
[Crossref]

Other (2)

Such a frequency standard is currently under development at LP2N Laboratory in Bordeaux, France (P. Bouyer and A. Hilico, private communications).

The complete details of this amplification stage is out of the scope of this paper, and will be provided in a future work.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Spectrum of the Acetylene $^{12} {\rm C}_{2}{\rm H}_{2}$ in the region of $\nu _{1}+\nu _{3}$ band showing the P and R branches. This spectrum is measured experimentally by an Optical Spectrum Analyzer (OSA) containing an acetylene cell, with a resolution of $0.02$ nm and an accuracy below $0.1$ nm (estimated by comparison with [15,16]). The dashed lines (green) correspond to the double of wavelengths of the D1 and D2 transitions of potassium.
Fig. 2.
Fig. 2. Overview of the experimental setup (AOM: Acousto-Optic Modulator; ISO: Fiber-Optic Isolator; SM (red): Single-Mode optical fiber; PM (blue): Polarization-Maintaining optical fiber; PD: Photo-diode; DFB: Distributed Feedback laser; EDFA: Erbium-Doped Fiber Amplifier). The system consists of two parts: the acetylene spectroscopy setup (upper half), for frequency stabilization of the UNL laser, and the offset phase-lock (lower half), which bridges the gap to twice the potassium cooling transition frequency, and seeds a high-power amplifier and SHG stage.
Fig. 3.
Fig. 3. a) Normalized absorption spectra of four ro-vibrational transitions of the $^{12}{\rm C}_{2}{\rm H}_{2}$ molecule. We observe two strong Doppler lines, with $\sim 1\%$ absorption (P(13) and P(15)) and two weaker lines with $\sim 0.3\%$ absorption (P(14) and P(23)). In presence of the pump laser (400 mW power), the sub-Doppler saturated absorption peaks are observed at $f_\textrm {AOM}/2=55$ MHz. b) Amplitude of the P(15) saturated absorption peak as a function of the power of the pump beam.
Fig. 4.
Fig. 4. a) and b): Saturated absorption peaks of the P(15) and P(23) transitions, obtained by applying a linear scan to the UNL laser frequency (rate 3 MHz/ms). The profiles are well fitted by a Lorentzian line shape (dashed blue lines: fit results; residuals in the top panel), and correspond to a FWHM of $1.73$ MHz for the P(15) transition and $1.57$ MHz in the case of the P(23) transition. A larger pump power of $600$ mW was used for the weaker P(23) transition, compared to $400$ mW in the case of the P(15) one. The saturated absorption peaks are used to generate the corresponding error signals, which are shown in c) and d). These signals are used to feed the PID filters, that generate the correction signal sent to the DFB diode laser. In black, we show the error signals of the laser, when locked to the corresponding acetylene peaks.
Fig. 5.
Fig. 5. a): Optical spectrum of the UNL laser, before (red) and after (blue) the phase modulator. The modulation frequency is chosen such that the sixth lower sideband coincides with the DFB laser frequency (cyan), tuned to $2 \times \lambda _\textrm {D2}$ transition. This allows to detect the low-frequency optical beat note between the two lasers, used for phase-locking. b): By scanning the UNL diode current, we superposed the acetylene saturated absorption peak (red) and the $^{39}$ K D2 crossover dip (cyan), when the UNL and the DFB lasers are phase-locked. This corresponds to a phase modulator frequency of $15.119$ GHz. c): Same spectra obtained with a similar setup, using a 1540 nm UNL laser, showing the acetylene P(23) transition (purple) and the potassium D1 crossovers (magenta), which are well resolved, due to the larger hyperfine splitting of the $^2$ P $_{1/2}$ state.
Fig. 6.
Fig. 6. Loading evolution of the $^{41}$ K atoms trapped in our 3D MOT. The blue curve is an exponential fit, which gives a $1/e$ loading time of $6$ s. Inset: fluorescence image of the $^{41}$ K atom cloud.

Metrics