Abstract

Due to their ability to produce high electric field enhancements in relatively large nanoscale volumes with minimum absorption and nonradiating properties, anapole modes excited in high index dielectric nanostructures have attracted considerable attentions in these years. We propose a design strategy to simultaneously excite the anapole mode efficiently and maintain its resonant wavelength, which has been remained as a challenge in the conventional dielectric nanostructures. Based on analyzing the relationship between the field enhancement factor and scattering intensity of the electric and toroidal dipoles, we introduce two and four nanocuboids into the nil field intensity areas in the silicon disk system, respectively. The geometric volume of the system can be increased effectively and the electric field enhancement is boosted to be 190% and 250% while the resonant wavelength of the anapole mode is almost maintained constant. The systems combined with a slot in the strongest field intensity area also follow the same law, revealing that the design strategy can be easily extended to other geometric, material and frequency systems. Different from the design strategy to add new components into the areas with strong field intensity, the incorporations occurring at the minimum intensity area is another design scheme to engineer the properties of the resonant systems and can find broad applications in nano-device designs.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of anapole mode electromagnetic field enhancement structures for biosensing applications

Laaya Sabri, Qinglan Huang, Jui-Nung Liu, and Brian T. Cunningham
Opt. Express 27(5) 7196-7212 (2019)

Anticrossing double Fano resonances generated in metallic/dielectric hybrid nanostructures using nonradiative anapole modes for enhanced nonlinear optical effects

Wu-Chao Zhai, Tie-Zhu Qiao, Dong-Jin Cai, Wen-Jie Wang, Jing-Dong Chen, Zhi-Hui Chen, and Shao-Ding Liu
Opt. Express 24(24) 27858-27869 (2016)

Engineering non-radiative anapole modes for broadband absorption enhancement of light

Ren Wang and Luca Dal Negro
Opt. Express 24(17) 19048-19062 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
    [Crossref]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014)..
    [Crossref]
  3. A. Barreda, J. Saiz, F. González, F. Moreno, and P. Albella, “Recent advances in high refractive index dielectric nanoantennas: Basics and applications,” AIP Adv. 9(4), 040701 (2019)..
    [Crossref]
  4. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref]
  5. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016)..
    [Crossref]
  6. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017)..
    [Crossref]
  7. S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017)..
    [Crossref]
  8. I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016)..
    [Crossref]
  9. A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018)..
    [Crossref]
  10. P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
    [Crossref]
  11. A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
    [Crossref]
  12. B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95(6), 063820 (2017)..
    [Crossref]
  13. L. Sabri, Q. Huang, J.-N. Liu, and B. T. Cunningham, “Design of anapole mode electromagnetic field enhancement structures for biosensing applications,” Opt. Express 27(5), 7196–7212 (2019)..
    [Crossref]
  14. Y. Yang and S. I. Bozhevolnyi, “Nonradiating anapole states in nanophotonics: from fundamentals to applications,” Nanotechnology 30(20), 204001 (2019)..
    [Crossref]
  15. D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018)..
    [Crossref]
  16. P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
    [Crossref]
  17. T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal–dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017)..
    [Crossref]
  18. L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
    [Crossref]
  19. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017)..
    [Crossref]
  20. S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures,” ACS Photonics 5(4), 1628–1639 (2018)..
    [Crossref]
  21. Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018)..
    [Crossref]
  22. A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015)..
    [Crossref]
  23. P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42(4), 835–838 (2017)..
    [Crossref]
  24. D. Aspnes and E. Palik, “Handbook of optical constants of solids,” Academic, New York, 89–112 (1985).
  25. A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016)..
    [Crossref]

2019 (3)

A. Barreda, J. Saiz, F. González, F. Moreno, and P. Albella, “Recent advances in high refractive index dielectric nanoantennas: Basics and applications,” AIP Adv. 9(4), 040701 (2019)..
[Crossref]

L. Sabri, Q. Huang, J.-N. Liu, and B. T. Cunningham, “Design of anapole mode electromagnetic field enhancement structures for biosensing applications,” Opt. Express 27(5), 7196–7212 (2019)..
[Crossref]

Y. Yang and S. I. Bozhevolnyi, “Nonradiating anapole states in nanophotonics: from fundamentals to applications,” Nanotechnology 30(20), 204001 (2019)..
[Crossref]

2018 (6)

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018)..
[Crossref]

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018)..
[Crossref]

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures,” ACS Photonics 5(4), 1628–1639 (2018)..
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018)..
[Crossref]

2017 (6)

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42(4), 835–838 (2017)..
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017)..
[Crossref]

S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017)..
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017)..
[Crossref]

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95(6), 063820 (2017)..
[Crossref]

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal–dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017)..
[Crossref]

2016 (4)

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016)..
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016)..
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016)..
[Crossref]

2015 (2)

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015)..
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

2014 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014)..
[Crossref]

2013 (1)

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

2010 (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
[Crossref]

Aizpurua, J.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

Albella, P.

A. Barreda, J. Saiz, F. González, F. Moreno, and P. Albella, “Recent advances in high refractive index dielectric nanoantennas: Basics and applications,” AIP Adv. 9(4), 040701 (2019)..
[Crossref]

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal–dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017)..
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

Alessandri, I.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016)..
[Crossref]

Alú, A.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018)..
[Crossref]

Aspnes, D.

D. Aspnes and E. Palik, “Handbook of optical constants of solids,” Academic, New York, 89–112 (1985).

Bakker, R. M.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Baranov, D. G.

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018)..
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
[Crossref]

Barreda, A.

A. Barreda, J. Saiz, F. González, F. Moreno, and P. Albella, “Recent advances in high refractive index dielectric nanoantennas: Basics and applications,” AIP Adv. 9(4), 040701 (2019)..
[Crossref]

Baryshnikova, K. V.

Bonod, N.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018)..
[Crossref]

Bozhevolnyi, S. I.

Y. Yang and S. I. Bozhevolnyi, “Nonradiating anapole states in nanophotonics: from fundamentals to applications,” Nanotechnology 30(20), 204001 (2019)..
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018)..
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014)..
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
[Crossref]

Caldarola, M.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018)..
[Crossref]

Camacho-Morales, R.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Chen, H.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Chen, J.-D.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures,” ACS Photonics 5(4), 1628–1639 (2018)..
[Crossref]

Chen, W. T.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Chen, Y.-H.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Chen, Z.-H.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures,” ACS Photonics 5(4), 1628–1639 (2018)..
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016)..
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Chipouline, A.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Chung, T. L.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Cunningham, B. T.

Evlyukhin, A. B.

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42(4), 835–838 (2017)..
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016)..
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Fan, J.-L.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures,” ACS Photonics 5(4), 1628–1639 (2018)..
[Crossref]

Fischer, T.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016)..
[Crossref]

Ghirardini, L.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

González, F.

A. Barreda, J. Saiz, F. González, F. Moreno, and P. Albella, “Recent advances in high refractive index dielectric nanoantennas: Basics and applications,” AIP Adv. 9(4), 040701 (2019)..
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014)..
[Crossref]

Grinblat, G.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017)..
[Crossref]

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal–dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017)..
[Crossref]

Huang, Q.

Huang, Y.-W.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016)..
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016)..
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
[Crossref]

Käll, M.

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018)..
[Crossref]

Kamali, K. Z.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Karabchevsky, A.

Karpinski, P.

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018)..
[Crossref]

Kivshar, Y.

S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017)..
[Crossref]

Kivshar, Y. S.

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95(6), 063820 (2017)..
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Krasnok, A.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018)..
[Crossref]

Kruk, S.

S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017)..
[Crossref]

Kuznetsov, A. I.

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95(6), 063820 (2017)..
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Lamprianidis, A.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Li, Y.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017)..
[Crossref]

Liao, C. Y.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Liu, A.-Q.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Liu, J.-N.

Liu, S.-D.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures,” ACS Photonics 5(4), 1628–1639 (2018)..
[Crossref]

Lombardi, J. R.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016)..
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95(6), 063820 (2017)..
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Maier, S. A.

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal–dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017)..
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017)..
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

Miroshnichenko, A. E.

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95(6), 063820 (2017)..
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015)..
[Crossref]

Mirzaei, A.

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015)..
[Crossref]

Moreno, F.

A. Barreda, J. Saiz, F. González, F. Moreno, and P. Albella, “Recent advances in high refractive index dielectric nanoantennas: Basics and applications,” AIP Adv. 9(4), 040701 (2019)..
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

Nielsen, M. P.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017)..
[Crossref]

Oulton, R. F.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017)..
[Crossref]

Palik, E.

D. Aspnes and E. Palik, “Handbook of optical constants of solids,” Academic, New York, 89–112 (1985).

Paniagua-Domínguez, R.

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95(6), 063820 (2017)..
[Crossref]

Parry, M.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Poyli, M. A.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

Rahmani, M.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016)..
[Crossref]

Sabri, L.

Sáenz, J. J.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

Saiz, J.

A. Barreda, J. Saiz, F. González, F. Moreno, and P. Albella, “Recent advances in high refractive index dielectric nanoantennas: Basics and applications,” AIP Adv. 9(4), 040701 (2019)..
[Crossref]

Sautter, J.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Savinov, V.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017)..
[Crossref]

Schmidt, M. K.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
[Crossref]

Shalin, A. S.

Shibanuma, T.

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal–dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017)..
[Crossref]

Staude, I.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017)..
[Crossref]

Terekhov, P. D.

Verre, R.

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018)..
[Crossref]

Wang, W.-J.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures,” ACS Photonics 5(4), 1628–1639 (2018)..
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
[Crossref]

Wu, P. C.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Wu, P. R.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

Xu, L.

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Yang, Y.

Y. Yang and S. I. Bozhevolnyi, “Nonradiating anapole states in nanophotonics: from fundamentals to applications,” Nanotechnology 30(20), 204001 (2019)..
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018)..
[Crossref]

Yu, Y. F.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Zenin, V. A.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018)..
[Crossref]

Zheludev, N. I.

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

ACS Nano (2)

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, and N. I. Zheludev, “Optical anapole metamaterial,” ACS Nano 12(2), 1920–1927 (2018)..
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017)..
[Crossref]

ACS Photonics (4)

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures,” ACS Photonics 5(4), 1628–1639 (2018)..
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018)..
[Crossref]

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018)..
[Crossref]

S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017)..
[Crossref]

Adv. Opt. Mater. (1)

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018)..
[Crossref]

AIP Adv. (1)

A. Barreda, J. Saiz, F. González, F. Moreno, and P. Albella, “Recent advances in high refractive index dielectric nanoantennas: Basics and applications,” AIP Adv. 9(4), 040701 (2019)..
[Crossref]

Chem. Rev. (1)

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016)..
[Crossref]

J. Phys. Chem. C (1)

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013)..
[Crossref]

Light: Sci. Appl. (1)

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, and I. Staude, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7(1), 44 (2018)..
[Crossref]

Nano Lett. (1)

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal–dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017)..
[Crossref]

Nanoscale (1)

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015)..
[Crossref]

Nanotechnology (1)

Y. Yang and S. I. Bozhevolnyi, “Nonradiating anapole states in nanophotonics: from fundamentals to applications,” Nanotechnology 30(20), 204001 (2019)..
[Crossref]

Nat. Commun. (1)

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015)..
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010)..
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016)..
[Crossref]

Nat. Photonics (2)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017)..
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014)..
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95(6), 063820 (2017)..
[Crossref]

Phys. Rev. B (1)

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016)..
[Crossref]

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Other (1)

D. Aspnes and E. Palik, “Handbook of optical constants of solids,” Academic, New York, 89–112 (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of a Φ-shaped silicon nanostructure under normal x-polarized incident illumination. The geometric parameters H, LA and LB represent the height, the overall length and width of the nanostructure respectively. D is the diameter of the central disk. WA and WB define the width of the two cuboids besides the central disk. The distribution of the bright hot spots in the central area corresponds to the excitation of the anapole mode.
Fig. 2.
Fig. 2. (a) Cartesian multipole decompositions of the scattering spectra for the silicon nanodisk with D = 400nm and H = 100nm. ED, TD, TED represents the electric dipole, toroidal dipole and the interference result between ED and TD respectively. All the resonance wavelengths are marked by vertical black dashed lines in the paper. (b) Distributions of the magnetic (left panel) and electric (right panel) field for the corresponding anapole mode at the resonant wavelength of 883 nm. The flow of the field vectors is indicated by the white arrows. The nil field areas are pointed by the thick pink arrows. The contour of the disk is traced by the black dash lines. (c) Schematic illustration of the electric field for the anapole mode in which the three thick yellow arrows clearly point to the directions of the electric current. The nil field areas are marked by the pink ellipses. All the color bars show the field magnitude |E|/|Eo| except otherwise specified.
Fig. 3.
Fig. 3. (a) Schematic illustration of the Disk + Cuboids (DCs) system. LC and LR correspond to the effective length of the anapole mode and the length of C1 respectively. (b) (c) The electric field enhancements as functions of the wavelength and the length (b) or the width (c) of C1. The magenta and green thick dashed lines highlight the optimal results. (d)(e)(f) The scattering cross sections for ED, TD and TED modes when the geometric size of C1 is different. (g) The corresponding electric field distributions at the resonance of the anapole modes as shown in (d)-(f). Please note (g3) and (g4) corresponds to the two resonances shown in (f).
Fig. 4.
Fig. 4. (a) Schematic illustration of the Φ-shaped nanostructure. LB and WB represent the length and width of C2. (b) (c) The electric field enhancements as functions of the wavelength and the length (b) or the width (c) of C2. The magenta and green thick dashed lines highlight the optimal results. (d)(e) The scattering cross sections for ED, TD and TED modes for different C2. (f) The corresponding electric field distributions at the resonance of the anapole modes as shown in (d) and (e).
Fig. 5.
Fig. 5. (a) Schematic illustration of the Φ-shaped nanostructure combined with a slot at the center with a length LS and width WS. (b) (c) The electric field enhancements as functions of the wavelength and the length (b) or the width (c) of the slot. The magenta thick dashed line highlights the optimal result. (d) Distributions of the electric (left panel) and magnetic (right panel) field for the anapole mode at the resonance.
Fig. 6.
Fig. 6. (a)/(b) Electric field enhancement results for the disk, DCs and Φ-shaped nanostructures without/with the split. The two magenta dashed lines are guides for eyes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p = P ( r ) d r T = i ω 10 [ 2 r 2 P ( r ) [ r P ( r ) ] d r m = i ω 2 r × P ( r ) d r
σ sca = k 0 4 6 π ϵ 0 2 | E 0 | 2 | P + i k 0 ε d c T | 2 + k 0 4 ε d μ 0 6 π ε 0 | E 0 | 2 | m | 2

Metrics