Abstract

We present the design, simulation, and experimental demonstration of a Si-GST grating assisted contra-directional coupler for optical switching. The effective refractive index of the GST-loaded silicon waveguide changes significantly when the GST is switched from the amorphous state to the crystalline state, allowing for large tuning of the propagation constant. The two coupled waveguides are designed to satisfy the phase-match condition only at the amorphous state to achieve Bragg reflection at the drop-port. Experimental results show that the device insertion loss is less than 5 dB and the extinction ratio is more than 15 dB with an operation bandwidth of 2.2 nm around the 1576 nm operating wavelength. Due to the nonvolatile property of GST, there is no static power consumption to maintain the two states. It is the first demonstration of a GST-enabled grating coupler that can be switched by phase change material.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Proposal of a Grating-Based Optical Reflection Switch using Phase Change Materials

Xiaomin Wang, Masashi Kuwahara, Koichi Awazu, Paul Fons, Junji Tominaga, and Yoshimichi Ohki
Opt. Express 17(19) 16947-16956 (2009)

Silicon photonic grating-assisted, contra-directional couplers

Wei Shi, Xu Wang, Charlie Lin, Han Yun, Yang Liu, Tom Baehr-Jones, Michael Hochberg, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 21(3) 3633-3650 (2013)

Feasibility study of a Ge2Sb2Te5-clad silicon waveguide as a non-volatile optical on-off switch

Junchao Song, Souvik Ghosh, Nikhil Dhingra, Hanyu Zhang, Linjie Zhou, and B. M. A. Rahman
OSA Continuum 2(1) 49-63 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Po, Y. K. Chen, G. H. Duan, and T. N. David, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
    [Crossref]
  2. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2511 (2015).
    [Crossref]
  3. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  4. L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16 × 16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
    [Crossref]
  5. Y. Zhou, L. Zhou, F. Su, X. Li, and J. Chen, “Linearity measurement and pulse amplitude modulation in a silicon single-drive push-pull Mach-Zehnder modulator,” J. Lightwave Technol. 34(14), 3323–3329 (2016).
    [Crossref]
  6. Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 silicon optical switch based on dual-ring assisted Mach-Zehnder interferometers,” J. Lightwave Technol. 36(2), 225–232 (2018).
    [Crossref]
  7. G. Zhou, L. Zhou, L. Lu, Y. Guo, and J. Chen, “Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
    [Crossref]
  8. F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
    [Crossref]
  9. Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
    [Crossref]
  10. Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
    [Crossref]
  11. A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
    [Crossref]
  12. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  13. T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
    [Crossref]
  14. M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
    [Crossref]
  15. H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  16. M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
    [Crossref]
  17. D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
    [Crossref]
  18. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
    [Crossref]
  19. H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43(22), 5539–5542 (2018).
    [Crossref]
  20. K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
    [Crossref]
  21. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
    [Crossref]
  22. H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
    [Crossref]
  23. H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
    [Crossref]
  24. R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
    [Crossref]
  25. M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346–7 (2017).
    [Crossref]
  26. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
    [Crossref]
  27. Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
    [Crossref]
  28. W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
    [Crossref]
  29. C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
    [Crossref]
  30. C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  31. C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
    [Crossref]
  32. Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
    [Crossref]
  33. J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
    [Crossref]
  34. J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a nonvolatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
    [Crossref]
  35. P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
    [Crossref]
  36. R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
    [Crossref]
  37. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  38. P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19(16), 2848–2855 (1980).
    [Crossref]
  39. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
    [Crossref]
  40. N. Yokoi, T. Fujisawa, K. Saitoh, and M. Koshiba, “Apodized photonic crystal waveguide gratings,” Opt. Express 14(10), 4459–4468 (2006).
    [Crossref]

2020 (1)

G. Zhou, L. Zhou, L. Lu, Y. Guo, and J. Chen, “Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

2019 (5)

L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16 × 16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
[Crossref]

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

2018 (8)

J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a nonvolatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43(22), 5539–5542 (2018).
[Crossref]

Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref]

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 silicon optical switch based on dual-ring assisted Mach-Zehnder interferometers,” J. Lightwave Technol. 36(2), 225–232 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

2017 (6)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346–7 (2017).
[Crossref]

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

2016 (3)

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Y. Zhou, L. Zhou, F. Su, X. Li, and J. Chen, “Linearity measurement and pulse amplitude modulation in a silicon single-drive push-pull Mach-Zehnder modulator,” J. Lightwave Technol. 34(14), 3323–3329 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

2015 (3)

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2511 (2015).
[Crossref]

A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
[Crossref]

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

2014 (3)

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

D. Po, Y. K. Chen, G. H. Duan, and T. N. David, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

2013 (3)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref]

2012 (3)

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

2011 (1)

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[Crossref]

2010 (1)

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

2006 (1)

1980 (1)

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Babinec, T. M.

A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
[Crossref]

Bhaskaran, H.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346–7 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Boechler, N.

Boeck, R.

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Chen, H.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Chen, J.

G. Zhou, L. Zhou, L. Lu, Y. Guo, and J. Chen, “Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16 × 16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
[Crossref]

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 silicon optical switch based on dual-ring assisted Mach-Zehnder interferometers,” J. Lightwave Technol. 36(2), 225–232 (2018).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43(22), 5539–5542 (2018).
[Crossref]

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

Y. Zhou, L. Zhou, F. Su, X. Li, and J. Chen, “Linearity measurement and pulse amplitude modulation in a silicon single-drive push-pull Mach-Zehnder modulator,” J. Lightwave Technol. 34(14), 3323–3329 (2016).
[Crossref]

Chen, R. T.

Chen, Y. K.

D. Po, Y. K. Chen, G. H. Duan, and T. N. David, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Cheng, Z.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

Chrostowski, L.

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref]

Colburn, S.

Cotton, R. L.

R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
[Crossref]

David, T. N.

D. Po, Y. K. Chen, G. H. Duan, and T. N. David, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Deshmukh, S.

Dong, J.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Doylend, J.

Doylend, J. K.

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

Duan, G. H.

D. Po, Y. K. Chen, G. H. Duan, and T. N. David, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Estrada, D.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[Crossref]

Fédéli, J.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Feldmann, J.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

Flueckiger, J.

Frantz, J.

Fujisawa, T.

Gruhler, N.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

Gu, T.

Guo, Y.

G. Zhou, L. Zhou, L. Lu, Y. Guo, and J. Chen, “Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Guo, Z.

Hendrickson, J.

Hosseini, A.

Hosseini, P.

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Hu, H.

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

Hu, J.

Hu, Z.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Ikuma, Y.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

Jaeger, N. A. F.

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref]

Jain, P.

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

Kato, K.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Kawashima, H.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

Khanolkar, A.

Kintaka, K.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Koshiba, M.

Kuwahara, M.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

Kwong, D.

Lagoudakis, K. G.

A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
[Crossref]

Le Gallo, M.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

Li, J.

Li, X.

Liao, A. D.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[Crossref]

Lin, C.

Liu, S.

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

Lu, J.

A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
[Crossref]

Lu, L.

G. Zhou, L. Zhou, L. Lu, Y. Guo, and J. Chen, “Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16 × 16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
[Crossref]

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43(22), 5539–5542 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 silicon optical switch based on dual-ring assisted Mach-Zehnder interferometers,” J. Lightwave Technol. 36(2), 225–232 (2018).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

Majumdar, A.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Moriyama, T.

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

Myers, J.

Osmond, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Pello, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Pernice, W. H. P.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346–7 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Petykiewicz, J.

A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
[Crossref]

Piggot, A. Y.

A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
[Crossref]

Po, D.

D. Po, Y. K. Chen, G. H. Duan, and T. N. David, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Pop, E.

Pruneri, V.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Rahman, B. M. A.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43(22), 5539–5542 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Ríos, C

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Ríos, C.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346–7 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Roelkens, G.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Rudé, M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Saitoh, K.

Scherer, T.

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Sebastian, A.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

Shen, L.

Shi, W.

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref]

Shoji, Y.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

Siegel, J.

R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
[Crossref]

Simpson, R. E.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Song, J.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Soref, R.

Stegmaier, M.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346–7 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Su, F.

Subbaraman, H.

Sun, Q.

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Tanaka, D.

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Taylor, H. F.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Toyosaki, T.

Tsuda, H.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

Tsuruoka, T.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

van der Tol, J. J. G. M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vuckovic, J.

A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
[Crossref]

Wang, D.

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wang, N.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

Wang, X.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

Wright, C. D.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346–7 (2017).
[Crossref]

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Wu, X.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Wu, Y.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Xia, Y.

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

Xiong, F.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[Crossref]

Xu, J.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43(22), 5539–5542 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Xu, L.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Xu, P.

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a nonvolatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
[Crossref]

Xu, X.

Xu, Y.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Yeh, P.

Yokoi, N.

Youngblood, N.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

Yu, Z.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Yun, H.

Zhang, H.

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43(22), 5539–5542 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Zhang, Q.

Zhang, W.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Zhang, X.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2511 (2015).
[Crossref]

Zhang, Y.

Zheng, J.

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a nonvolatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
[Crossref]

Zhong, Y.

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

Zhou, F.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Zhou, G.

G. Zhou, L. Zhou, L. Lu, Y. Guo, and J. Chen, “Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Zhou, L.

G. Zhou, L. Zhou, L. Lu, Y. Guo, and J. Chen, “Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16 × 16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
[Crossref]

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43(22), 5539–5542 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 silicon optical switch based on dual-ring assisted Mach-Zehnder interferometers,” J. Lightwave Technol. 36(2), 225–232 (2018).
[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

Y. Zhou, L. Zhou, F. Su, X. Li, and J. Chen, “Linearity measurement and pulse amplitude modulation in a silicon single-drive push-pull Mach-Zehnder modulator,” J. Lightwave Technol. 34(14), 3323–3329 (2016).
[Crossref]

Zhou, Y.

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

Y. Zhou, L. Zhou, F. Su, X. Li, and J. Chen, “Linearity measurement and pulse amplitude modulation in a silicon single-drive push-pull Mach-Zehnder modulator,” J. Lightwave Technol. 34(14), 3323–3329 (2016).
[Crossref]

Zhou, Z.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

ACS Photonics (3)

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

Adv. Mater. (1)

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346–7 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Appl. Phys. Lett. (2)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Electron. Lett. (1)

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Zhou, L. Zhou, L. Lu, Y. Guo, and J. Chen, “Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

IEEE Photonics J. (4)

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic Multiple Microwave Frequency Measurement Based on Frequency-to-Time Mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Q. Sun, L. Zhou, L. Lu, G. Zhou, and J. Chen, “Reconfigurable High-Resolution Microwave Photonic Filter Based on Dual-Ring-Assisted MZIs on the Si3N4 Platform,” IEEE Photonics J. 10(6), 1–12 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

IEICE Electron. Express (1)

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

J. Appl. Phys. (1)

R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Nanophotonics (1)

D. Po, Y. K. Chen, G. H. Duan, and T. N. David, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Nat. Commun. (1)

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]

Nat. Photonics (3)

C Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

A. Y. Piggot, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 347–350 (2015).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Photonics Res. (1)

Y. Zhong, L. Zhou, Y. Zhou, Y. Xia, S. Liu, L. Lu, J. Chen, and X. Wang, “Microwave frequency upconversion employing a coupling-modulated ring resonator,” Photonics Res. 5(6), 689 (2017).
[Crossref]

Sci. Adv. (2)

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), eaau5759 (2019).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

Sci. Bull. (1)

H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]

Science (1)

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[Crossref]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Three-dimensional perspective view of the contra-directional coupler enabled by Si-GST grating. Inset I illustrates the cross-sectional view of the coupler. Inset II illustrates the top view of the coupler. The critical dimensions are labeled in the graphs.
Fig. 2.
Fig. 2. Calculated effective indices of the waveguide modes with the phase-match conditions. The contra-directional coupling is only achieved at the intersection point.
Fig. 3.
Fig. 3. Simulated through and drop transmission spectra when GST changes from the amorphous (a-gst) to the crystalline (c-gst) state.
Fig. 4.
Fig. 4. Electric-field intensity (|E|2) distribution in the x-y plane at the Bragg resonance wavelength when GST is in the (a) amorphous state and (b) crystalline state. Inset I: Electric-field cross-sectional profile. Inset II: Magnified view of the Electric-field intensity distribution in the front 10-µm-long section.
Fig. 5.
Fig. 5. (a) Optical microscope image of the fabricated devices with different grating periods. (b) Scanning electron microscope image of the coupling region.
Fig. 6.
Fig. 6. Measured transmission spectra of devices when the GST is at the amorphous state with grating periods of (a) 370 nm, (b) 374 nm, (c) 378 nm, and (d) 382 nm.
Fig. 7.
Fig. 7. Measured spectra at (a) the through-port and (b) the drop-port when GST changes from the amorphous state to the crystalline state. The yellow bar indicates the 2.2 nm operation bandwidth for optical switching.
Fig. 8.
Fig. 8. Comparison of the transmission spectra of two contra-directional couplers with apodized and uniform gratings, respectively.
Fig. 9.
Fig. 9. Scheme for electrically driven contra-directional switching by integrating a silicon resistive microheater in the vicinity of the Si-GST grating.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β a ( λ ) + β b ( λ ) = 2 π / Λ
β a = 2 π n 1 / λ β b = 2 π n 2 / λ
n 1 + n 2 = λ / Λ
n 2 2 = n 2 1 2 F F + n 2 2 2 ( 1 F F )
K = ω ε 0 4 E a Δ n 2 E b d x d y
F F ( i ) = F F 0 + ( 1 e a ( i N / 2 ) 2 N 2 ) cos ( i π ) F F 0

Metrics