Abstract

We report the design and operation of a surface-emitting surface acoustic wave (SAW) acousto-optical modulator which behaves as a cm-scale linear hologram in response to an applied electronic waveform. The modulator is formed by an optical waveguide, transducer, and out-coupling surface grating on a 1 mm-thick lithium niobate substrate. We demonstrate the ability to load and illuminate a 9-region linear hologram into the modulator's 8 mm-long interaction region using applied waveforms of 280–320 MHz. To the best of the authors’ knowledge, this is the first demonstration of a monolithically-integrated, surface-emitting SAW modulator fabricated using lithographic techniques. Applications include practical implementations of a holographic display.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Leaky-mode waveguide modulators with high deflection angle for use in holographic video displays

Kamran Qaderi and Daniel E. Smalley
Opt. Express 24(18) 20831-20841 (2016)

High power femtosecond semiconductor lasers based on saw-toothed master-oscillator power-amplifier system with compressed ASE

Yanjing Wang, Xin Zhang, Cunzhu Tong, Lijie Wang, Shili Shu, Sicong Tian, and Lijun Wang
Opt. Express 28(5) 7108-7115 (2020)

Reflective acousto-optic modulation with surface acoustic waves

Stanley S. Hong, Michael S. Mermelstein, and Dennis M. Freeman
Appl. Opt. 43(14) 2920-2924 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Lucente, “Electronic holographic displays: 20 years of interactive spatial imaging,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer International Publishing, 2016).
  2. M. Yamaguchi, “Light-field and holographic three-dimensional displays,” J. Opt. Soc. Am. A 33(12), 2348–2364 (2016).
    [Crossref]
  3. D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
    [Crossref]
  4. Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: algorithms, devices, and systems,” IEEE Trans. Ind. Inf. 12(4), 1599–1610 (2016).
    [Crossref]
  5. J. S. Chen, Q. Y. J. Smithwick, and D. P. Chu, “Coarse integral holography approach for real 3D color video displays,” Opt. Express 24(6), 6705–6718 (2016).
    [Crossref]
  6. J. S. Kollin, “Design and information considerations for holographic television,” S.M. thesis (MIT, 1988).
  7. P. St.-Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34(10), 2900–2911 (1995).
    [Crossref]
  8. F. R. Gfeller and C. W. Pitt, “Colinear acousto-optic deflection in thin films,” Electron. Lett. 8(22), 549–551 (1972).
    [Crossref]
  9. A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides,” IEEE T. Ultrason. Ferr. 47(1), 16–28 (2000).
    [Crossref]
  10. D. E. Smalley, “High-resolution spatial light modulation for holographic video,” S.M. thesis (MIT, 2008).
  11. D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
    [Crossref]
  12. S. McLaughlin, C. Leach, S. Gneiting, V. M. Bove, S. Jolly, and D. E. Smalley, “Progress on waveguide-based holographic video,” Chin. Opt. Lett. 14(1), 010003 (2016).
    [Crossref]
  13. S. Jolly, N. Savidis, B. Datta, D. Smalley, and V. Michael Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” Proc. SPIE 10127, 101270J (2017).
  14. M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. thesis, pp. 55–59 (MIT, 1994).
  15. Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove, “Interactive holographic stereograms with accommodation cues,” Proc. SPIE 7619, 761903 (2010).
    [Crossref]
  16. M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 1–12 (2014).
    [Crossref]
  17. S. Jolly, B. Datta, V. Parthiban, D. Smalley, and V. M. Bove, “Experimental characterization of leaky-mode spatial light modulators fabricated via direct laser writing,” Proc. SPIE 10944, 109440V (2019).
    [Crossref]
  18. S. McLaughlin, A. Henrie, S. Gneiting, and D. E. Smalley, “Backside emission leaky-mode modulators,” Opt. Express 25(17), 20622–20627 (2017).
    [Crossref]
  19. D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
    [Crossref]
  20. T. M. Reeder, “Excitation of surface-acoustic waves by use of interdigital electrode transducers,” in Guided-Wave Acousto-Optics: Interactions, Devices, and Applications, C. S. Tsai, ed. (Springer, 1990).
  21. V. Liu and S. Fan, “S4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  22. A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
    [Crossref]
  23. W. Akemann, J. F. Lager, C. Ventalon, B. Mathieu, S. Dieudonna, and L. Bordieu, “Fast beam shaping by acousto-optic diffraction for 3D non-linear microscopy,” Opt. Express 23(22), 28191–28205 (2015).
    [Crossref]
  24. S. J. Byrnes, G. E. Favalora, I. W. Frank, A. Kopa, J. A. Korn, and M. G. Moebius, “System and method for diffractive steering of electromagnetic radiation,” U.S. Pat. App. Pub. No. 2019-0094652 A1 (priority: Sep. 28, 2017).

2019 (2)

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

S. Jolly, B. Datta, V. Parthiban, D. Smalley, and V. M. Bove, “Experimental characterization of leaky-mode spatial light modulators fabricated via direct laser writing,” Proc. SPIE 10944, 109440V (2019).
[Crossref]

2017 (2)

S. McLaughlin, A. Henrie, S. Gneiting, and D. E. Smalley, “Backside emission leaky-mode modulators,” Opt. Express 25(17), 20622–20627 (2017).
[Crossref]

S. Jolly, N. Savidis, B. Datta, D. Smalley, and V. Michael Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” Proc. SPIE 10127, 101270J (2017).

2016 (4)

2015 (2)

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref]

W. Akemann, J. F. Lager, C. Ventalon, B. Mathieu, S. Dieudonna, and L. Bordieu, “Fast beam shaping by acousto-optic diffraction for 3D non-linear microscopy,” Opt. Express 23(22), 28191–28205 (2015).
[Crossref]

2014 (1)

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 1–12 (2014).
[Crossref]

2013 (1)

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref]

2012 (1)

V. Liu and S. Fan, “S4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

2010 (1)

Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove, “Interactive holographic stereograms with accommodation cues,” Proc. SPIE 7619, 761903 (2010).
[Crossref]

2007 (1)

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

2000 (1)

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides,” IEEE T. Ultrason. Ferr. 47(1), 16–28 (2000).
[Crossref]

1995 (1)

P. St.-Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34(10), 2900–2911 (1995).
[Crossref]

1972 (1)

F. R. Gfeller and C. W. Pitt, “Colinear acousto-optic deflection in thin films,” Electron. Lett. 8(22), 549–551 (1972).
[Crossref]

Ahar, A.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Akemann, W.

Barabas, J.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref]

Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove, “Interactive holographic stereograms with accommodation cues,” Proc. SPIE 7619, 761903 (2010).
[Crossref]

Bettens, S.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Birnbaum, T.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Blinder, D.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Bordieu, L.

Bove, V. M.

S. Jolly, B. Datta, V. Parthiban, D. Smalley, and V. M. Bove, “Experimental characterization of leaky-mode spatial light modulators fabricated via direct laser writing,” Proc. SPIE 10944, 109440V (2019).
[Crossref]

S. McLaughlin, C. Leach, S. Gneiting, V. M. Bove, S. Jolly, and D. E. Smalley, “Progress on waveguide-based holographic video,” Chin. Opt. Lett. 14(1), 010003 (2016).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref]

Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove, “Interactive holographic stereograms with accommodation cues,” Proc. SPIE 7619, 761903 (2010).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

Byrnes, S. J.

S. J. Byrnes, G. E. Favalora, I. W. Frank, A. Kopa, J. A. Korn, and M. G. Moebius, “System and method for diffractive steering of electromagnetic radiation,” U.S. Pat. App. Pub. No. 2019-0094652 A1 (priority: Sep. 28, 2017).

Chen, J. S.

Chu, D. P.

Datta, B.

S. Jolly, B. Datta, V. Parthiban, D. Smalley, and V. M. Bove, “Experimental characterization of leaky-mode spatial light modulators fabricated via direct laser writing,” Proc. SPIE 10944, 109440V (2019).
[Crossref]

S. Jolly, N. Savidis, B. Datta, D. Smalley, and V. Michael Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” Proc. SPIE 10127, 101270J (2017).

Dieudonna, S.

Do, N.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides,” IEEE T. Ultrason. Ferr. 47(1), 16–28 (2000).
[Crossref]

Fan, S.

V. Liu and S. Fan, “S4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Favalora, G. E.

S. J. Byrnes, G. E. Favalora, I. W. Frank, A. Kopa, J. A. Korn, and M. G. Moebius, “System and method for diffractive steering of electromagnetic radiation,” U.S. Pat. App. Pub. No. 2019-0094652 A1 (priority: Sep. 28, 2017).

Frank, I. W.

S. J. Byrnes, G. E. Favalora, I. W. Frank, A. Kopa, J. A. Korn, and M. G. Moebius, “System and method for diffractive steering of electromagnetic radiation,” U.S. Pat. App. Pub. No. 2019-0094652 A1 (priority: Sep. 28, 2017).

Gfeller, F. R.

F. R. Gfeller and C. W. Pitt, “Colinear acousto-optic deflection in thin films,” Electron. Lett. 8(22), 549–551 (1972).
[Crossref]

Gneiting, S.

Haymore, B.

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref]

Henrie, A.

S. McLaughlin, A. Henrie, S. Gneiting, and D. E. Smalley, “Backside emission leaky-mode modulators,” Opt. Express 25(17), 20622–20627 (2017).
[Crossref]

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref]

Hirsch, M.

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 1–12 (2014).
[Crossref]

Jolly, S.

S. Jolly, B. Datta, V. Parthiban, D. Smalley, and V. M. Bove, “Experimental characterization of leaky-mode spatial light modulators fabricated via direct laser writing,” Proc. SPIE 10944, 109440V (2019).
[Crossref]

S. Jolly, N. Savidis, B. Datta, D. Smalley, and V. Michael Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” Proc. SPIE 10127, 101270J (2017).

S. McLaughlin, C. Leach, S. Gneiting, V. M. Bove, S. Jolly, and D. E. Smalley, “Progress on waveguide-based holographic video,” Chin. Opt. Lett. 14(1), 010003 (2016).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref]

Kollin, J. S.

J. S. Kollin, “Design and information considerations for holographic television,” S.M. thesis (MIT, 1988).

Kopa, A.

S. J. Byrnes, G. E. Favalora, I. W. Frank, A. Kopa, J. A. Korn, and M. G. Moebius, “System and method for diffractive steering of electromagnetic radiation,” U.S. Pat. App. Pub. No. 2019-0094652 A1 (priority: Sep. 28, 2017).

Korn, J. A.

S. J. Byrnes, G. E. Favalora, I. W. Frank, A. Kopa, J. A. Korn, and M. G. Moebius, “System and method for diffractive steering of electromagnetic radiation,” U.S. Pat. App. Pub. No. 2019-0094652 A1 (priority: Sep. 28, 2017).

Lager, J. F.

Leach, C.

Li, X.

Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: algorithms, devices, and systems,” IEEE Trans. Ind. Inf. 12(4), 1599–1610 (2016).
[Crossref]

Liu, J.

Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: algorithms, devices, and systems,” IEEE Trans. Ind. Inf. 12(4), 1599–1610 (2016).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Lucente, M.

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. thesis, pp. 55–59 (MIT, 1994).

Lucente, M. E.

M. E. Lucente, “Electronic holographic displays: 20 years of interactive spatial imaging,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer International Publishing, 2016).

Mathieu, B.

Matteo, A. M.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides,” IEEE T. Ultrason. Ferr. 47(1), 16–28 (2000).
[Crossref]

McLaughlin, S.

Michael Bove, V.

S. Jolly, N. Savidis, B. Datta, D. Smalley, and V. Michael Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” Proc. SPIE 10127, 101270J (2017).

Moebius, M. G.

S. J. Byrnes, G. E. Favalora, I. W. Frank, A. Kopa, J. A. Korn, and M. G. Moebius, “System and method for diffractive steering of electromagnetic radiation,” U.S. Pat. App. Pub. No. 2019-0094652 A1 (priority: Sep. 28, 2017).

Ottevaere, H.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Pan, Y.

Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: algorithms, devices, and systems,” IEEE Trans. Ind. Inf. 12(4), 1599–1610 (2016).
[Crossref]

Parthiban, V.

S. Jolly, B. Datta, V. Parthiban, D. Smalley, and V. M. Bove, “Experimental characterization of leaky-mode spatial light modulators fabricated via direct laser writing,” Proc. SPIE 10944, 109440V (2019).
[Crossref]

Pitt, C. W.

F. R. Gfeller and C. W. Pitt, “Colinear acousto-optic deflection in thin films,” Electron. Lett. 8(22), 549–551 (1972).
[Crossref]

Raskar, R.

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 1–12 (2014).
[Crossref]

Reeder, T. M.

T. M. Reeder, “Excitation of surface-acoustic waves by use of interdigital electrode transducers,” in Guided-Wave Acousto-Optics: Interactions, Devices, and Applications, C. S. Tsai, ed. (Springer, 1990).

Savidis, N.

S. Jolly, N. Savidis, B. Datta, D. Smalley, and V. Michael Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” Proc. SPIE 10127, 101270J (2017).

Schelkens, P.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Schretter, C.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Smalley, D.

S. Jolly, B. Datta, V. Parthiban, D. Smalley, and V. M. Bove, “Experimental characterization of leaky-mode spatial light modulators fabricated via direct laser writing,” Proc. SPIE 10944, 109440V (2019).
[Crossref]

S. Jolly, N. Savidis, B. Datta, D. Smalley, and V. Michael Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” Proc. SPIE 10127, 101270J (2017).

Smalley, D. E.

S. McLaughlin, A. Henrie, S. Gneiting, and D. E. Smalley, “Backside emission leaky-mode modulators,” Opt. Express 25(17), 20622–20627 (2017).
[Crossref]

S. McLaughlin, C. Leach, S. Gneiting, V. M. Bove, S. Jolly, and D. E. Smalley, “Progress on waveguide-based holographic video,” Chin. Opt. Lett. 14(1), 010003 (2016).
[Crossref]

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref]

Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove, “Interactive holographic stereograms with accommodation cues,” Proc. SPIE 7619, 761903 (2010).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

D. E. Smalley, “High-resolution spatial light modulation for holographic video,” S.M. thesis (MIT, 2008).

Smithwick, Q. Y. J.

J. S. Chen, Q. Y. J. Smithwick, and D. P. Chu, “Coarse integral holography approach for real 3D color video displays,” Opt. Express 24(6), 6705–6718 (2016).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref]

Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove, “Interactive holographic stereograms with accommodation cues,” Proc. SPIE 7619, 761903 (2010).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

St.-Hilaire, P.

P. St.-Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34(10), 2900–2911 (1995).
[Crossref]

Symeonidou, A.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Tsai, C. S.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides,” IEEE T. Ultrason. Ferr. 47(1), 16–28 (2000).
[Crossref]

Ventalon, C.

Wang, Y.

Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: algorithms, devices, and systems,” IEEE Trans. Ind. Inf. 12(4), 1599–1610 (2016).
[Crossref]

Wetzstein, G.

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 1–12 (2014).
[Crossref]

Yamaguchi, M.

ACM Trans. Graph. (1)

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 1–12 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Electron. Lett. (1)

F. R. Gfeller and C. W. Pitt, “Colinear acousto-optic deflection in thin films,” Electron. Lett. 8(22), 549–551 (1972).
[Crossref]

IEEE T. Ultrason. Ferr. (1)

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides,” IEEE T. Ultrason. Ferr. 47(1), 16–28 (2000).
[Crossref]

IEEE Trans. Ind. Inf. (1)

Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: algorithms, devices, and systems,” IEEE Trans. Ind. Inf. 12(4), 1599–1610 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref]

Opt. Eng. (1)

P. St.-Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34(10), 2900–2911 (1995).
[Crossref]

Opt. Express (3)

Proc. SPIE (4)

Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove, “Interactive holographic stereograms with accommodation cues,” Proc. SPIE 7619, 761903 (2010).
[Crossref]

S. Jolly, B. Datta, V. Parthiban, D. Smalley, and V. M. Bove, “Experimental characterization of leaky-mode spatial light modulators fabricated via direct laser writing,” Proc. SPIE 10944, 109440V (2019).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

S. Jolly, N. Savidis, B. Datta, D. Smalley, and V. Michael Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” Proc. SPIE 10127, 101270J (2017).

Rev. Sci. Instrum. (1)

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency division color characterization apparatus for anisotropic leaky mode light modulators,” Rev. Sci. Instrum. 86(2), 023101 (2015).
[Crossref]

Signal Process. Image Commun. (1)

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Other (6)

M. E. Lucente, “Electronic holographic displays: 20 years of interactive spatial imaging,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer International Publishing, 2016).

J. S. Kollin, “Design and information considerations for holographic television,” S.M. thesis (MIT, 1988).

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. thesis, pp. 55–59 (MIT, 1994).

D. E. Smalley, “High-resolution spatial light modulation for holographic video,” S.M. thesis (MIT, 2008).

S. J. Byrnes, G. E. Favalora, I. W. Frank, A. Kopa, J. A. Korn, and M. G. Moebius, “System and method for diffractive steering of electromagnetic radiation,” U.S. Pat. App. Pub. No. 2019-0094652 A1 (priority: Sep. 28, 2017).

T. M. Reeder, “Excitation of surface-acoustic waves by use of interdigital electrode transducers,” in Guided-Wave Acousto-Optics: Interactions, Devices, and Applications, C. S. Tsai, ed. (Springer, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Side view of surface-emitting SAW AOM. TE light is in-coupled into the waveguide via a rutile prism (not to scale), and interacts with counter-propagating SAW pulses which cause TM light to “leak” into the substrate bulk at angle θDIP. A SAW typically penetrates one acoustic wavelength (approximately 10 µm in these devices) into the substrate, enabling an interaction with the optical wave confined to a surface waveguide of similar depth. The diffracted light is redirected towards the top modulator face by a 360 nm surface grating and exits at angle θAIR. A two-frequency-component SAW 1 yields diffracted optical signals depicted in black and dashed orange, and SAW 2 has one frequency component whose corresponding diffracted signal is depicted in black. (b) Isometric view, simplified for illustration by depicting a single spatial frequency SAW yielding a bundle of output rays. (c) Expected dip and exit signal trajectories for various values of f. (d) Modulated light exits the surface from a location along y as a function of the location and frequency spectrum of the pulse-illuminated SAW. These can be plotted in an angle-space parameterization.
Fig. 2.
Fig. 2. (a) and (b) In 3-D display applications, the channels of one or more surface-emitting SAW modulators reconstruct light fields in response to the frequency components of electronic signals as controlled by a computer or other controller, and possibly also as a function of illumination wavelength as described in this paper. The modulator(s), partitioned into rows, could be followed by a light field conditioning stage for: polarization-based extinction of TE (unmodulated) background light, horizontal field of view expansion (from, e.g., a micro-telescope array), and a vertical diffuser to widen the observers’ up-down head motion as is typical in a horizontal-parallax-only display. (c) and (d) Example design of a FOV expander; the principle of operation is described in the body of the manuscript.
Fig. 3.
Fig. 3. (a) Device layout with aspects of the waveguides, IDTs, and backside out-coupling gratings shown. This experimental device has three columns of five IDTs. Only the first column was used in the scope of this paper. (b) Device photograph.
Fig. 4.
Fig. 4. (a) The out-coupling surface grating fabrication goal is 135 nm-thick spin-on HSQ with a 135-165 nm line width and 360 nm period, backed with silver. (b) SEM image of a test grating on LiNbO3.
Fig. 5.
Fig. 5. (a) Top view of modulator characterization apparatus. The optical power detector is at the end of one of two rotating arms; observations are plotted with respect to arbitrary laboratory frame angle θLAB. For increasing applied single frequency f, an output ray turns in the direction shown. (b, c, d) Example SAW waveforms: one single-frequency burst (which results in an output ray whose trajectory corresponds to the frequency; vertical cut of Fig. 6(a) at 305 MHz), a series of four single-frequency bursts (resulting in four output rays at an angle θLAB; vertical cut of Fig. 6(b) at 305 MHz), and a series of four higher-frequency bursts (resulting in output rays at smaller θLAB; cut 319 MHz of Fig. 6(b).)
Fig. 6.
Fig. 6. Detected optical power density, in units of nW/mm2, as a function of applied waveform frequency and detector angle θLAB. (a) Interpreted as a series of vertical plot-cuts, a series of single-tone SAWs results in light changing trajectory as a function of SAW frequency. (b) 4 spaced-apart SAW bursts act as 4 spaced-apart gratings. (c) Observation of beam steering from a 9-hogel electrohologram having 5 SAW fringes and 4 zero-amplitude spaces. (d) Emitted light exits the AOM at the frequency-dependent θAIR, and is measured at two detector distances, r1= 95 mm and r2 = 213 mm. Inverse ray tracing is used to determine the origin of the light along y and its trajectory θAIR from θLAB and r.
Fig. 7.
Fig. 7. Timing of the laser and RF waveform triggers corresponding to the 9-hogel datamap of Fig. 6(c). In this example, there is no phase difference between the laser gating signal and the RF (IDT driver) gating signal. The light field can be translated along y with changes in Δφ.

Metrics