Abstract

Plasmonic nanoparticles with a dielectric-metal core-shell morphology exhibit hybridized modes where the surface plasmon polaritons at the outer and inner surfaces of the shell couple. We demonstrate that suitably tailoring the interference of such hybrid surface plasmon polariton modes leads to composite subwavelength nanospheres with negative asymmetry parameters and strong scattering in the optical frequency range. As a result, for a low density collection of scatterers an anomalous regime occurs, where the extinction mean free path is longer than the transport mean free path. Explicit results for silver-coated nanospheres are presented.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-driven large Hall photon currents in light scattering by a core–shell magnetoplasmonic nanosphere

Paris Varytis and Nikolaos Stefanou
J. Opt. Soc. Am. B 33(6) 1286-1290 (2016)

Ultra-directional forward scattering by individual core-shell nanoparticles

Wei Liu, Jianfa Zhang, Bing Lei, Haotong Ma, Wenke Xie, and Haojun Hu
Opt. Express 22(13) 16178-16187 (2014)

Broadband zero backward scattering by all-dielectric core-shell nanoparticles

Runmin Li, Xin Zhou, Mingcheng Panmai, Jin Xiang, Haiying Liu, Min Ouyang, Haihua Fan, Qiaofeng Dai, and Zhongchao Wei
Opt. Express 26(22) 28891-28901 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
  2. R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
    [Crossref]
  3. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
  4. M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73(6), 765–767 (1983).
    [Crossref]
  5. R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83(3), 033825 (2011).
    [Crossref]
  6. B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
    [Crossref]
  7. S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
    [Crossref]
  8. J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
    [Crossref]
  9. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref]
  10. W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
    [Crossref]
  11. R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett. 40(11), 2645–2648 (2015).
    [Crossref]
  12. D. Lacoste, B. A. van Tiggelen, G. L. J. A. Rikken, and A. Sparenberg, “Optics of a faraday-active mie sphere,” J. Opt. Soc. Am. A 15(6), 1636–1642 (1998).
    [Crossref]
  13. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
    [Crossref]
  14. P. Varytis and N. Stefanou, “Plasmon-driven large hall photon currents in light scattering by a core–shell magnetoplasmonic nanosphere,” J. Opt. Soc. Am. B 33(6), 1286–1290 (2016).
    [Crossref]
  15. R. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
    [Crossref]
  16. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
    [Crossref]
  17. Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
    [Crossref]
  18. M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7(1), 14762 (2017).
    [Crossref]
  19. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84(7), 1435–1438 (2000).
    [Crossref]
  20. R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
    [Crossref]
  21. T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Electromagnetic energy and negative asymmetry parameters in coated magneto-optical cylinders: Applications to tunable light transport in disordered systems,” Phys. Rev. A 94(3), 033825 (2016).
    [Crossref]
  22. L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
    [Crossref]
  23. G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(14), 143901 (2014).
    [Crossref]
  24. A. Sheverdin and C. Valagiannopoulos, “Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking,” Phys. Rev. B 99(7), 075305 (2019).
    [Crossref]
  25. A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/ or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
    [Crossref]
  26. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).
  27. P. Varytis, D.-N. Huynh, W. Hartmann, W. Pernice, and K. Busch, “Design study of random spectrometers for applications at optical frequencies,” Opt. Lett. 43(13), 3180–3183 (2018).
    [Crossref]
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref]
  29. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69(15), 155402 (2004).
    [Crossref]
  30. C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys.: Condens. Matter 20(7), 075232 (2008).
    [Crossref]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2019 (1)

A. Sheverdin and C. Valagiannopoulos, “Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking,” Phys. Rev. B 99(7), 075305 (2019).
[Crossref]

2018 (1)

2017 (1)

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7(1), 14762 (2017).
[Crossref]

2016 (2)

P. Varytis and N. Stefanou, “Plasmon-driven large hall photon currents in light scattering by a core–shell magnetoplasmonic nanosphere,” J. Opt. Soc. Am. B 33(6), 1286–1290 (2016).
[Crossref]

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Electromagnetic energy and negative asymmetry parameters in coated magneto-optical cylinders: Applications to tunable light transport in disordered systems,” Phys. Rev. A 94(3), 033825 (2016).
[Crossref]

2015 (3)

2014 (2)

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref]

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(14), 143901 (2014).
[Crossref]

2013 (2)

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

2012 (3)

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
[Crossref]

2011 (3)

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
[Crossref]

R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83(3), 033825 (2011).
[Crossref]

2008 (2)

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref]

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys.: Condens. Matter 20(7), 075232 (2008).
[Crossref]

2005 (1)

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/ or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

2004 (2)

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[Crossref]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69(15), 155402 (2004).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

2000 (1)

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84(7), 1435–1438 (2000).
[Crossref]

1998 (1)

1983 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Rikken, G. L. J.

Abdelrahman, M. I.

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7(1), 14762 (2017).
[Crossref]

Aizpurua, J.

Alaee, R.

Albella, P.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/ or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

Arruda, T. J.

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Electromagnetic energy and negative asymmetry parameters in coated magneto-optical cylinders: Applications to tunable light transport in disordered systems,” Phys. Rev. A 94(3), 033825 (2016).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Brown, L. V.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
[Crossref]

Burresi, M.

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(14), 143901 (2014).
[Crossref]

Busch, K.

Chantada, L.

Chen, Z.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Conley, G. M.

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(14), 143901 (2014).
[Crossref]

Dogariu, A.

Engheta, N.

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/ or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

Eyraud, C.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Farina, C.

Fernandez-Corbaton, I.

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7(1), 14762 (2017).
[Crossref]

Filter, R.

Froufe-Pérez, L. S.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

Gantzounis, G.

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys.: Condens. Matter 20(7), 075232 (2008).
[Crossref]

García de Abajo, F. J.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69(15), 155402 (2004).
[Crossref]

García-Cámara, B.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref]

García-Etxarri, A.

Geffrin, J.-M.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Giles, C.

Gómez-Medina, R.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
[Crossref]

R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83(3), 033825 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

González, F.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref]

Halas, N. J.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Hartmann, W.

Hess, O.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Huschka, R.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
[Crossref]

Huynh, D.-N.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kerker, M.

Kivshar, Y. S.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

Knight, M. W.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
[Crossref]

Kort-Kamp, W. J. M.

Lacoste, D.

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Lederer, F.

Lehr, D.

Li, Y.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Litman, A.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Liu, W.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

López, C.

Maier, S. A.

S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).

Martinez, A. S.

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Electromagnetic energy and negative asymmetry parameters in coated magneto-optical cylinders: Applications to tunable light transport in disordered systems,” Phys. Rev. A 94(3), 033825 (2016).
[Crossref]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84(7), 1435–1438 (2000).
[Crossref]

Mendez-Alcaraz, J. M.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[Crossref]

Miroshnichenko, A. E.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

Moreno, F.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref]

Naraghi, R. R.

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

Nieto-Vesperinas, M.

R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
[Crossref]

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83(3), 033825 (2011).
[Crossref]

Nordlander, P.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Oulton, R. F.

Pernice, W.

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Pinheiro, F. A.

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Electromagnetic energy and negative asymmetry parameters in coated magneto-optical cylinders: Applications to tunable light transport in disordered systems,” Phys. Rev. A 94(3), 033825 (2016).
[Crossref]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84(7), 1435–1438 (2000).
[Crossref]

Popov, V. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69(15), 155402 (2004).
[Crossref]

Pratesi, F.

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(14), 143901 (2014).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Rockstuhl, C.

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7(1), 14762 (2017).
[Crossref]

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett. 40(11), 2645–2648 (2015).
[Crossref]

Rojas-Ochoa, L. F.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[Crossref]

Rosa, F. S. S.

Saenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Sáenz, J. J.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83(3), 033825 (2011).
[Crossref]

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[Crossref]

Saiz, J. M.

Sampaio, L. C.

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84(7), 1435–1438 (2000).
[Crossref]

Scheffold, F.

R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[Crossref]

Schurtenberger, P.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[Crossref]

Sheverdin, A.

A. Sheverdin and C. Valagiannopoulos, “Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking,” Phys. Rev. B 99(7), 075305 (2019).
[Crossref]

Sparenberg, A.

Stefanou, N.

P. Varytis and N. Stefanou, “Plasmon-driven large hall photon currents in light scattering by a core–shell magnetoplasmonic nanosphere,” J. Opt. Soc. Am. B 33(6), 1286–1290 (2016).
[Crossref]

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys.: Condens. Matter 20(7), 075232 (2008).
[Crossref]

Sukhov, S.

Teperik, T. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69(15), 155402 (2004).
[Crossref]

Tserkezis, C.

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys.: Condens. Matter 20(7), 075232 (2008).
[Crossref]

Vaillon, R.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Valagiannopoulos, C.

A. Sheverdin and C. Valagiannopoulos, “Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking,” Phys. Rev. B 99(7), 075305 (2019).
[Crossref]

van Tiggelen, B. A.

Varytis, P.

Vynck, K.

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(14), 143901 (2014).
[Crossref]

Wan, M.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Wang, D.-S.

Wang, Z.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Wiersma, D. S.

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(14), 143901 (2014).
[Crossref]

Wu, W.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Yépez, M.

R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
[Crossref]

Zhan, P.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Zuloaga, J.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
[Crossref]

ACS Nano (1)

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of dna from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc. 133(31), 12247–12255 (2011).
[Crossref]

J. Appl. Phys. (1)

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/ or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys.: Condens. Matter 20(7), 075232 (2008).
[Crossref]

Nano Lett. (1)

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Nat. Commun. (1)

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (3)

R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83(3), 033825 (2011).
[Crossref]

R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz, “Negative scattering asymmetry parameter for dipolar particles: Unusual reduction of the transport mean free path and radiation pressure,” Phys. Rev. A 85(3), 035802 (2012).
[Crossref]

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Electromagnetic energy and negative asymmetry parameters in coated magneto-optical cylinders: Applications to tunable light transport in disordered systems,” Phys. Rev. A 94(3), 033825 (2016).
[Crossref]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Sheverdin and C. Valagiannopoulos, “Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking,” Phys. Rev. B 99(7), 075305 (2019).
[Crossref]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69(15), 155402 (2004).
[Crossref]

Phys. Rev. Lett. (3)

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[Crossref]

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(14), 143901 (2014).
[Crossref]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84(7), 1435–1438 (2000).
[Crossref]

Sci. Rep. (2)

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7(1), 14762 (2017).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Other (3)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Panel (a): Scattering efficiency $Q_{\mathrm {sc}}$ of a dielectric sphere of radius 100 nm with permittivity $\epsilon =4$ , in air, and the relative (with respect to the incident plane wave) electric field amplitude distribution in the plane of polarization, at the resonance wavelength. Panel (b): Electric (red lines) and magnetic type (blue lines) Mie coefficients for n=1 (solid lines) and n=2 (dashed lines). Panel (c): Asymmetry parameter $g$ and the contribution of the corresponding terms (Eq. (4)). Inset: Backward (black line) and forward (red line) scattering efficiency.
Fig. 2.
Fig. 2. Panel (a): Scattering efficiency $Q_{\mathrm {sc}}$ of a composite nanoparticle, composed of a dielectric core of radius 90 nm and permittivity $\epsilon =4$ , coated with a concentric silver shell, 10 nm thick, in air, along with the relative (with respect to the incident plane wave) electric field amplitude distributions in the plane of polarization, at the three resonances. Panel (b): Electric (red lines) and magnetic type (blue lines) Mie coefficients for n=1 (solid lines) and n=2 (dashed lines). Panel (c): Asymmetry parameter $g$ and the contribution of the corresponding terms (Eq. (4)). Inset: Backward (black line) and forward (red line) scattering efficiency.
Fig. 3.
Fig. 3. Panels (a), (b) and (c): Scattering efficiency, Mie coefficients and asymmetry parameter of a composite nanoparticle, composed of a dielectric core of radius 80 nm and permittivity $\epsilon =4$ , coated with a concentric silver shell, 20 nm thick, in air, respectively. Panels (d), (e) and (f): Scattering efficiency, Mie coefficients and asymmetry parameter of a composite nanoparticle, composed of a dielectric core of radius 70 nm and permittivity $\epsilon =4$ , coated with a concentric silver shell, 30 nm thick, in air, respectively. In both cases the total radius of the scatterer is $S = 100$ nm. Insets: Backward (black line) and forward (red line) scattering efficiency.
Fig. 4.
Fig. 4. Panels (a), (b) and (c): Wavelength dependence of the scattering efficiency (black solid lines, left ordinate) and asymmetry parameter (red dotted lines, right ordinate) of infinite dielectric cylinders, coated with a concentric silver shells of thickness $D=30$ nm, $D=20$ nm, and $D=10$ nm, respectively. In all cases, the radius of the composite scatterer is $S = 100$ nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q b = 1 x 2 | n = 1 ( 2 n + 1 ) ( 1 ) n ( a n b n ) | 2   ,
Q f = 1 x 2 | n = 1 ( 2 n + 1 ) ( a n + b n ) | 2   ,
Q s c = 2 x 2 n = 1 ( 2 n + 1 ) ( | a n | 2 + | b n | 2 )   .
g = 4 Q s c x 2 n = 1 [ n ( n + 2 ) n + 1 ( a n a n + 1 + b n b n + 1 ) + 2 n + 1 n ( n + 1 ) ( a n b n ) ]   ,
l t l e x t = Q e x t Q e x t Q s c a g   .

Metrics