Abstract

Strongly confined surface waves can be achieved on periodically structured metal surfaces and are known as spoof surface plasmon polaritons (SPPs). In this work, several terahertz SPP devices based on curved waveguides are demonstrated. The transmittance and bending loss of 90-degree curved spoof SPP waveguides with a radius of curvature ranging from 200 to 2300 µm are investigated to identify the regime for high transmission. A commutator is designed and experimentally demonstrated. Furthermore, coupling equations are derived and verified for efficient coupling between bend-straight waveguides and between bend-bend waveguides. The results will be of great value for future integrated terahertz plasmonic systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz spoof surface-plasmon-polariton subwavelength waveguide

Ying Zhang, Yuehong Xu, Chunxiu Tian, Quan Xu, Xueqian Zhang, Yanfeng Li, Xixiang Zhang, Jiaguang Han, and Weili Zhang
Photon. Res. 6(1) 18-23 (2018)

Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons

Yihao Yang, Hongsheng Chen, Sanshui Xiao, N. Asger Mortensen, and Jingjing Zhang
Opt. Express 23(15) 19074-19081 (2015)

Design of a hybrid spoof plasmonic sub-terahertz waveguide with low bending loss in a broad frequency band

Mohammad Ali Khosrovani Moghaddam and Mehdi Ahmadi-Boroujeni
Opt. Express 25(6) 6860-6873 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Berlin, 2007).
  2. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [Crossref]
  3. K. Tanaka and M. Tanaka, “Simulations of Nanometric Optical Circuits: Open-Type Surface Plasmon Polariton Gap Waveguide,” Appl. Phys. Lett. 42(6A), L585–L588 (2003).
    [Crossref]
  4. T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
    [Crossref]
  5. L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
    [Crossref]
  6. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref]
  7. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: New plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  8. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  9. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [Crossref]
  10. L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
    [Crossref]
  11. S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
    [Crossref]
  12. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett. 36(23), 4635–4637 (2011).
    [Crossref]
  13. X. Shen and T. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  14. Y. Zhang, P. Zhang, and Z. Han, “One-dimensional spoof surface plasmon structures for planar terahertz photonic integration,” J. Lightwave Technol. 33(18), 3796–3800 (2015).
    [Crossref]
  15. L. Ye, Y. Xiao, Y. Liu, L. Zhang, G. Cai, and Q. Liu, “Strongly confined spoof surface slasmon solaritons waveguiding enabled by planar staggered plasmonic waveguides,” Sci. Rep. 6(1), 38528 (2016).
    [Crossref]
  16. L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
    [Crossref]
  17. L. Ye, H. Feng, G. Cai, Y. Zhang, B. Yan, and Q. Liu, “High-efficient and low-coupling spoof surface plasmon polaritons enabled by V-shaped microstrips,” Opt. Express 27(16), 22088–22099 (2019).
    [Crossref]
  18. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref]
  19. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
    [Crossref]
  20. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
    [Crossref]
  21. G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
    [Crossref]
  22. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref]
  23. Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
    [Crossref]
  24. Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
    [Crossref]
  25. J. Yin, J. Ren, H. Zhang, B. Pan, and T. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
    [Crossref]
  26. X. Gao, L. Zhou, and T. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5(1), 9250 (2015).
    [Crossref]
  27. Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
    [Crossref]
  28. Y. Zhou and B. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
    [Crossref]
  29. L. Ye, W. Zhang, B. K. Ofori-Okai, W. Li, J. Zhuo, G. Cai, and Q. Liu, “Super subwavelength guiding and rejecting of terahertz spoof SPPs enabled by planar plasmonic waveguides and notch filters based on spiral-shaped units,” J. Lightwave Technol. 36(20), 4988–4994 (2018).
    [Crossref]
  30. L. Ye, Y. Chen, K. Xu, W. Li, Q. Liu, and Y. Zhang, “Substrate integrated plasmonic waveguide for microwave bandpass filter applications,” IEEE Access 7, 75957–75964 (2019).
    [Crossref]
  31. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
    [Crossref]
  32. M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Area. Comm. 23(7), 1390–1395 (2005).
    [Crossref]
  33. I. Ntakis, P. Pottier, and R. M. De La Rue, “Optimization of transmittance properties of two-dimensional photonic crystal channel waveguide bends through local lattice deformation,” J. Appl. Phys. 96(1), 12–18 (2004).
    [Crossref]
  34. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  35. Y. A. Vlasov and S. J. Mcnab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [Crossref]
  36. D. J. Dikken, M. Spasenović, E. Verhagen, D. van Oosten, and L. K. Kuipers, “Characterization of bending losses for curved plasmonic nanowire waveguides,” Opt. Express 18(15), 16112–16119 (2010).
    [Crossref]
  37. Z. Gao, X. Zhang, and L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
    [Crossref]
  38. M. A. K. Moghaddam and M. Ahmadi-Boroujeni, “Design of a hybrid spoof plasmonic sub-terahertz waveguide with low bending loss in a broad frequency band,” Opt. Express 25(6), 6860–6873 (2017).
    [Crossref]
  39. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Photonics Technol. Lett. 9(9), 919–933 (1973).
    [Crossref]
  40. H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62(8), 1044–1060 (1974).
    [Crossref]
  41. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
    [Crossref]
  42. M. Matsuhara and A. Watanabe, “Coupling of curved transmittance lines, and application to optical directional couplers,” J. Opt. Soc. Am. 65(2), 163–168 (1975).
    [Crossref]
  43. C. Wang, Q. Li, G. Liu, G. Jin, and X. Xu, “The calculation of switching power of symmetric and asymmetric nonlinear directional couplers with variable coupling coefficient,” IEEE Photonics Technol. Lett. 16(10), 2248–2250 (2004).
    [Crossref]
  44. Y. Jia and Y. Hao, “Power exchange between two nonparallel waveguides,” Acta Photon. Sin. 34(6), 852–856 (2005). (In Chinese).
  45. H. Liang, S. Shi, and L. Ma, “Coupled-mode theory of nonparallel optical waveguides,” J. Lightwave Technol. 25(8), 2233–2235 (2007).
    [Crossref]
  46. M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
    [Crossref]
  47. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmittance through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  48. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [Crossref]
  49. L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
    [Crossref]
  50. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (3rd Edition) (John Wiley & Sons, 2019).

2019 (3)

L. Ye, H. Feng, G. Cai, Y. Zhang, B. Yan, and Q. Liu, “High-efficient and low-coupling spoof surface plasmon polaritons enabled by V-shaped microstrips,” Opt. Express 27(16), 22088–22099 (2019).
[Crossref]

L. Ye, Y. Chen, K. Xu, W. Li, Q. Liu, and Y. Zhang, “Substrate integrated plasmonic waveguide for microwave bandpass filter applications,” IEEE Access 7, 75957–75964 (2019).
[Crossref]

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

2018 (2)

2017 (3)

2016 (3)

L. Ye, Y. Xiao, Y. Liu, L. Zhang, G. Cai, and Q. Liu, “Strongly confined spoof surface slasmon solaritons waveguiding enabled by planar staggered plasmonic waveguides,” Sci. Rep. 6(1), 38528 (2016).
[Crossref]

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

2015 (5)

Y. Zhou and B. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
[Crossref]

J. Yin, J. Ren, H. Zhang, B. Pan, and T. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

X. Gao, L. Zhou, and T. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5(1), 9250 (2015).
[Crossref]

Y. Zhang, P. Zhang, and Z. Han, “One-dimensional spoof surface plasmon structures for planar terahertz photonic integration,” J. Lightwave Technol. 33(18), 3796–3800 (2015).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

2013 (3)

X. Shen and T. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
[Crossref]

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

2011 (1)

2010 (3)

2009 (2)

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref]

2008 (3)

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[Crossref]

2007 (1)

2006 (2)

T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

2005 (6)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: New plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[Crossref]

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Area. Comm. 23(7), 1390–1395 (2005).
[Crossref]

Y. Jia and Y. Hao, “Power exchange between two nonparallel waveguides,” Acta Photon. Sin. 34(6), 852–856 (2005). (In Chinese).

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

2004 (5)

C. Wang, Q. Li, G. Liu, G. Jin, and X. Xu, “The calculation of switching power of symmetric and asymmetric nonlinear directional couplers with variable coupling coefficient,” IEEE Photonics Technol. Lett. 16(10), 2248–2250 (2004).
[Crossref]

I. Ntakis, P. Pottier, and R. M. De La Rue, “Optimization of transmittance properties of two-dimensional photonic crystal channel waveguide bends through local lattice deformation,” J. Appl. Phys. 96(1), 12–18 (2004).
[Crossref]

Y. A. Vlasov and S. J. Mcnab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

2003 (1)

K. Tanaka and M. Tanaka, “Simulations of Nanometric Optical Circuits: Open-Type Surface Plasmon Polariton Gap Waveguide,” Appl. Phys. Lett. 42(6A), L585–L588 (2003).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmittance through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1985 (1)

A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
[Crossref]

1975 (1)

1974 (1)

H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62(8), 1044–1060 (1974).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Photonics Technol. Lett. 9(9), 919–933 (1973).
[Crossref]

Agrawal, A.

Ahmadi-Boroujeni, M.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

Ayre, M.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Area. Comm. 23(7), 1390–1395 (2005).
[Crossref]

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Cai, G.

Cao, J. R.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

Chen, C.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Chen, X.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
[Crossref]

Chen, Y.

L. Ye, Y. Chen, K. Xu, W. Li, Q. Liu, and Y. Zhang, “Substrate integrated plasmonic waveguide for microwave bandpass filter applications,” IEEE Access 7, 75957–75964 (2019).
[Crossref]

Choi, S. J.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

Cui, T.

J. Yin, J. Ren, H. Zhang, B. Pan, and T. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

X. Gao, L. Zhou, and T. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5(1), 9250 (2015).
[Crossref]

X. Shen and T. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Dapkus, P. D.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

Davies, T.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Area. Comm. 23(7), 1390–1395 (2005).
[Crossref]

De La Rue, R. M.

I. Ntakis, P. Pottier, and R. M. De La Rue, “Optimization of transmittance properties of two-dimensional photonic crystal channel waveguide bends through local lattice deformation,” J. Appl. Phys. 96(1), 12–18 (2004).
[Crossref]

Dikken, D. J.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmittance through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Feng, H.

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gao, X.

X. Gao, L. Zhou, and T. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5(1), 9250 (2015).
[Crossref]

Gao, Y.

Gao, Z.

Z. Gao, X. Zhang, and L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

Garcia-Vidal, F. J.

D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett. 36(23), 4635–4637 (2011).
[Crossref]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: New plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

García-Vidal, F. J.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmittance through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Grischkowsky, D.

T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[Crossref]

Gu, C.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Gu, J.

Han, J.

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref]

Han, Z.

Hao, Y.

Y. Jia and Y. Hao, “Power exchange between two nonparallel waveguides,” Acta Photon. Sin. 34(6), 852–856 (2005). (In Chinese).

Hardy, A.

A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
[Crossref]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Jadidi, M. M.

S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
[Crossref]

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

Jeon, T. I.

T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[Crossref]

Jia, Y.

Y. Jia and Y. Hao, “Power exchange between two nonparallel waveguides,” Acta Photon. Sin. 34(6), 852–856 (2005). (In Chinese).

Jin, G.

C. Wang, Q. Li, G. Liu, G. Jin, and X. Xu, “The calculation of switching power of symmetric and asymmetric nonlinear directional couplers with variable coupling coefficient,” IEEE Photonics Technol. Lett. 16(10), 2248–2250 (2004).
[Crossref]

Karle, T. J.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Area. Comm. 23(7), 1390–1395 (2005).
[Crossref]

Kim, W. J.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Krauss, T. F.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Area. Comm. 23(7), 1390–1395 (2005).
[Crossref]

Kuang, W.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

Kuipers, L. K.

Kumar, G.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
[Crossref]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmittance through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, Q.

C. Wang, Q. Li, G. Liu, G. Jin, and X. Xu, “The calculation of switching power of symmetric and asymmetric nonlinear directional couplers with variable coupling coefficient,” IEEE Photonics Technol. Lett. 16(10), 2248–2250 (2004).
[Crossref]

Li, S.

Li, W.

Li, Y.

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref]

Li, Z.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Liang, H.

Lipson, M.

Liu, G.

C. Wang, Q. Li, G. Liu, G. Jin, and X. Xu, “The calculation of switching power of symmetric and asymmetric nonlinear directional couplers with variable coupling coefficient,” IEEE Photonics Technol. Lett. 16(10), 2248–2250 (2004).
[Crossref]

Liu, J.

Liu, L.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Liu, N.

Liu, Q.

Liu, S.

Liu, Y.

L. Ye, Y. Xiao, Y. Liu, L. Zhang, G. Cai, and Q. Liu, “Strongly confined spoof surface slasmon solaritons waveguiding enabled by planar staggered plasmonic waveguides,” Sci. Rep. 6(1), 38528 (2016).
[Crossref]

Lu, Y.

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

Ma, L.

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Berlin, 2007).

Martin-Cano, D.

Martin-Moreno, L.

Martín-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: New plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Matsuhara, M.

Mcnab, S. J.

Moghaddam, M. A. K.

Moreno, E.

Murphy, T. E.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
[Crossref]

Nahata, A.

Nesterov, M. L.

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

Ning, P.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Ntakis, I.

I. Ntakis, P. Pottier, and R. M. De La Rue, “Optimization of transmittance properties of two-dimensional photonic crystal channel waveguide bends through local lattice deformation,” J. Appl. Phys. 96(1), 12–18 (2004).
[Crossref]

O’Brien, J. D.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

Ofori-Okai, B. K.

Ouyang, C.

Pan, B.

J. Yin, J. Ren, H. Zhang, B. Pan, and T. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: New plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Pottier, P.

I. Ntakis, P. Pottier, and R. M. De La Rue, “Optimization of transmittance properties of two-dimensional photonic crystal channel waveguide bends through local lattice deformation,” J. Appl. Phys. 96(1), 12–18 (2004).
[Crossref]

Quevedo-Teruel, O.

Ren, J.

J. Yin, J. Ren, H. Zhang, B. Pan, and T. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (3rd Edition) (John Wiley & Sons, 2019).

Shen, L.

Z. Gao, X. Zhang, and L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
[Crossref]

Shen, X.

X. Shen and T. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Shi, S.

Shih, M. H.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

Song, Z.

Spasenovic, M.

Streifer, W.

A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
[Crossref]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of Nanometric Optical Circuits: Open-Type Surface Plasmon Polariton Gap Waveguide,” Appl. Phys. Lett. 42(6A), L585–L588 (2003).
[Crossref]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of Nanometric Optical Circuits: Open-Type Surface Plasmon Polariton Gap Waveguide,” Appl. Phys. Lett. 42(6A), L585–L588 (2003).
[Crossref]

Taylor, H. F.

H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62(8), 1044–1060 (1974).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (3rd Edition) (John Wiley & Sons, 2019).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmittance through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tian, C.

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref]

Tian, L.

Tian, Z.

van Oosten, D.

Verhagen, E.

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Vlasov, Y. A.

Wang, C.

C. Wang, Q. Li, G. Liu, G. Jin, and X. Xu, “The calculation of switching power of symmetric and asymmetric nonlinear directional couplers with variable coupling coefficient,” IEEE Photonics Technol. Lett. 16(10), 2248–2250 (2004).
[Crossref]

Watanabe, A.

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmittance through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, L.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Area. Comm. 23(7), 1390–1395 (2005).
[Crossref]

Xiao, Y.

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[Crossref]

L. Ye, Y. Xiao, Y. Liu, L. Zhang, G. Cai, and Q. Liu, “Strongly confined spoof surface slasmon solaritons waveguiding enabled by planar staggered plasmonic waveguides,” Sci. Rep. 6(1), 38528 (2016).
[Crossref]

Xu, B.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Xu, J.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Xu, K.

L. Ye, Y. Chen, K. Xu, W. Li, Q. Liu, and Y. Zhang, “Substrate integrated plasmonic waveguide for microwave bandpass filter applications,” IEEE Access 7, 75957–75964 (2019).
[Crossref]

Xu, Q.

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref]

Xu, X.

C. Wang, Q. Li, G. Liu, G. Jin, and X. Xu, “The calculation of switching power of symmetric and asymmetric nonlinear directional couplers with variable coupling coefficient,” IEEE Photonics Technol. Lett. 16(10), 2248–2250 (2004).
[Crossref]

Xu, Y.

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Yan, B.

Yan, J.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Yang, B.

Yang, T. J.

Yariv, A.

H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62(8), 1044–1060 (1974).
[Crossref]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Photonics Technol. Lett. 9(9), 919–933 (1973).
[Crossref]

Ye, L.

Yin, J.

J. Yin, J. Ren, H. Zhang, B. Pan, and T. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Yuan, M.

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

Zhang, H.

J. Yin, J. Ren, H. Zhang, B. Pan, and T. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Zhang, L.

L. Ye, Y. Xiao, Y. Liu, L. Zhang, G. Cai, and Q. Liu, “Strongly confined spoof surface slasmon solaritons waveguiding enabled by planar staggered plasmonic waveguides,” Sci. Rep. 6(1), 38528 (2016).
[Crossref]

Zhang, P.

Zhang, W.

Zhang, X.

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Z. Gao, X. Zhang, and L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

Zhang, Y.

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

L. Ye, Y. Chen, K. Xu, W. Li, Q. Liu, and Y. Zhang, “Substrate integrated plasmonic waveguide for microwave bandpass filter applications,” IEEE Access 7, 75957–75964 (2019).
[Crossref]

L. Ye, H. Feng, G. Cai, Y. Zhang, B. Yan, and Q. Liu, “High-efficient and low-coupling spoof surface plasmon polaritons enabled by V-shaped microstrips,” Opt. Express 27(16), 22088–22099 (2019).
[Crossref]

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref]

Y. Zhang, P. Zhang, and Z. Han, “One-dimensional spoof surface plasmon structures for planar terahertz photonic integration,” J. Lightwave Technol. 33(18), 3796–3800 (2015).
[Crossref]

Zhang, Z.

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref]

Zhou, K.

Zhou, L.

X. Gao, L. Zhou, and T. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5(1), 9250 (2015).
[Crossref]

Zhou, Y.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Y. Zhou and B. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
[Crossref]

Zhu, W.

Zhuo, J.

Acta Photon. Sin. (1)

Y. Jia and Y. Hao, “Power exchange between two nonparallel waveguides,” Acta Photon. Sin. 34(6), 852–856 (2005). (In Chinese).

AIP Adv. (1)

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

K. Tanaka and M. Tanaka, “Simulations of Nanometric Optical Circuits: Open-Type Surface Plasmon Polariton Gap Waveguide,” Appl. Phys. Lett. 42(6A), L585–L588 (2003).
[Crossref]

T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[Crossref]

X. Shen and T. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

IEEE Access (1)

L. Ye, Y. Chen, K. Xu, W. Li, Q. Liu, and Y. Zhang, “Substrate integrated plasmonic waveguide for microwave bandpass filter applications,” IEEE Access 7, 75957–75964 (2019).
[Crossref]

IEEE J. Sel. Area. Comm. (1)

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Area. Comm. 23(7), 1390–1395 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Photonics Technol. Lett. 9(9), 919–933 (1973).
[Crossref]

C. Wang, Q. Li, G. Liu, G. Jin, and X. Xu, “The calculation of switching power of symmetric and asymmetric nonlinear directional couplers with variable coupling coefficient,” IEEE Photonics Technol. Lett. 16(10), 2248–2250 (2004).
[Crossref]

J. Appl. Phys. (2)

Z. Gao, X. Zhang, and L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

I. Ntakis, P. Pottier, and R. M. De La Rue, “Optimization of transmittance properties of two-dimensional photonic crystal channel waveguide bends through local lattice deformation,” J. Appl. Phys. 96(1), 12–18 (2004).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: New plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref]

Nanophotonics (1)

M. Yuan, Y. Li, Y. Lu, Y. Zhang, Z. Zhang, X. Zhang, X. Zhang, J. Han, and W. Zhang, “High-performance and compact broadband terahertz plasmonic waveguide intersection,” Nanophotonics 8(10), 1811–1819 (2019).
[Crossref]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmittance through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

New J. Phys. (1)

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

Opt. Express (11)

Y. A. Vlasov and S. J. Mcnab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[Crossref]

L. Ye, H. Feng, G. Cai, Y. Zhang, B. Yan, and Q. Liu, “High-efficient and low-coupling spoof surface plasmon polaritons enabled by V-shaped microstrips,” Opt. Express 27(16), 22088–22099 (2019).
[Crossref]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref]

D. J. Dikken, M. Spasenović, E. Verhagen, D. van Oosten, and L. K. Kuipers, “Characterization of bending losses for curved plasmonic nanowire waveguides,” Opt. Express 18(15), 16112–16119 (2010).
[Crossref]

S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
[Crossref]

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
[Crossref]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[Crossref]

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref]

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[Crossref]

M. A. K. Moghaddam and M. Ahmadi-Boroujeni, “Design of a hybrid spoof plasmonic sub-terahertz waveguide with low bending loss in a broad frequency band,” Opt. Express 25(6), 6860–6873 (2017).
[Crossref]

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref]

Opt. Lett. (2)

Photonics Res. (1)

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photonics Res. 6(1), 18–23 (2018).
[Crossref]

Phys. Rev. B (1)

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

Phys. Rev. Lett. (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

Proc. IEEE (1)

H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62(8), 1044–1060 (1974).
[Crossref]

Sci. Rep. (4)

J. Yin, J. Ren, H. Zhang, B. Pan, and T. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

X. Gao, L. Zhou, and T. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5(1), 9250 (2015).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

L. Ye, Y. Xiao, Y. Liu, L. Zhang, G. Cai, and Q. Liu, “Strongly confined spoof surface slasmon solaritons waveguiding enabled by planar staggered plasmonic waveguides,” Sci. Rep. 6(1), 38528 (2016).
[Crossref]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Berlin, 2007).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (3rd Edition) (John Wiley & Sons, 2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Structure and dispersion relation. (a) Schematic diagram and geometric parameters of the structure (the red arrow depicts the propagation direction of SPPs). The lower left inset shows the SEM image of the fabricated arc-shaped curved hole array excitation region as well as the fan-shaped coupling region. The lower right inset shows the fabricated waveguide structure. (b) The simulated dispersion relation (red line) of SPP mode for one row of metal pillars.
Fig. 2.
Fig. 2. Performance of bends and waveguide components. (a)-(d) SEM images of structures corresponding to R = 200, 900, 1600, 2300 µm, respectively. (e)-(h) Simulated and (i)-(l) experimental results for normalized power |Ez|2 distributions corresponding to (a)-(d) in a horizontal plane slightly above (at 100 µm) the surface of each structure at 0.56 THz. (m) Optical image of commutator. (n) Simulated and (o) experimental results for normalized power |Ez|2 distributions corresponding to the commutator in (m).
Fig. 3.
Fig. 3. Performance of bends. (a) Transmittance spectra and (b) bending losses as a function of frequency for 90-degree curved bends with different R values from 200 to 2300 µm.
Fig. 4.
Fig. 4. Simulated (red circles) and measured (black circles) bending losses as a function of R at 0.56 THz.
Fig. 5.
Fig. 5. Curved waveguide geometries and analysis. Structures of (a) bend-straight waveguides and (b) bend-bend waveguides. (c) Dispersion relation of even and odd supemodes for waveguides with varying g. The left inset shows normalized electric component (EZ) distributions in the yz cross section for even (upper left) and odd modes (lower left) supported by two parallel waveguides with g = 80 µm at 0.62 THz. The inset on the right indicates the electric field at g = 280 µm. (d) The difference in kx between two supermodes as a function of g from 80 to 280 µm at 0.62 THz.
Fig. 6.
Fig. 6. Normalized powers for (a) bend-straight waveguides and (c) bend-bend waveguides as a function of propagation distance at 0.62 THz. The red dotted lines indicate the output powers from the curved portion when the propagation distances of the SPPs are large enough. (b) and (d) The normalized output powers of two parallel waveguides as a function of L. In all cases, the black solid and red dashed lines represent the normalized powers from waveguides 1 and 2, respectively.
Fig. 7.
Fig. 7. Performance of directional couplers. (a) and (b) SEM images of structures corresponding to bend-straight waveguides and bend-bend waveguides, respectively. (c) and (d) Simulated and (e) and (f) experimental results for normalized power |Ez|2 distributions corresponding to (a) and (b) in a horizontal plane slightly above (at 100 µm) the surface of each structure at 0.62 THz. (g) and (h) Simulated and experimental cross-sectional normalized power distributions at the end of the coupling regions (line x = 4 mm) in (c)-(f).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ i = α i 2 = 1 2 arccos R ( g max g ) R θ j = α j 2 = 1 2 arccos 2 R ( g max g ) 2 R .
g i = g + x i tan θ i g j = g + 2 x j tan θ j .
K i = K 0 exp ( p x i tan θ i ) ,
K j = K 0 exp ( 2 p x j tan θ j ) ,
L c = π k x e k x o = π 2 K 0 ,
K 0 = Δ k  =  k x e k x o 2 .
d A 1 d x = j K 0 A 2 exp ( p x i tan θ i ) d A 2 d x = j K 0 A 1 exp ( p x i tan θ i ) ,
P i1 = cos 2 { K 0 p tan θ i [ 1 exp ( p x i tan θ i ) ] } P i2 = si n 2 { K 0 p tan θ i [ 1 exp ( p x i tan θ i ) ] } .
P j1 = cos 2 { K 0 2 p tan θ j [ 1 exp ( 2 p x j tan θ j ) ] } P j2 = si n 2 { K 0 2 p tan θ j [ 1 exp ( 2 p x j tan θ j ) ] } .

Metrics