Abstract

This study introduces design and coupling techniques, which bridge an opaque liquid metal, optical WGM mode, and mechanical mode into an opto-mechano-fluidic microbubble resonator (MBR) consisting of a dielectric silica shell and liquid metal core. Benefiting from the conductivity of the liquid metal, Ohmic heating was carried out for the MBR by applying current to the liquid metal to change the temperature of the MBR by more than 300 °C. The optical mode was thermally tuned (>3 nm) over a full free spectral range because the Ohmic heating changed the refractive index of the silica and dimeter of the MBR. The mechanical mode was thermally tuned with a relative tuning range of 9% because the Ohmic heating changed the velocity and density of the liquid metal.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Packaged optofluidic microbubble resonators for optical sensing

Ting Tang, Xiang Wu, Liying Liu, and Lei Xu
Appl. Opt. 55(2) 395-399 (2016)

Optomechanics in anisotropic liquid crystal -filled micro-bubble resonators

Qi Wang, Sheng Liu, Liying Liu, and Lei Xu
Opt. Express 27(12) 17051-17060 (2019)

Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli Effect

Zhenmin Chen, Zhihe Guo, Xin Mu, Qian Li, Xiang Wu, and H. Y. Fu
Opt. Express 27(25) 36932-36940 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H.-B. Lin and A. Campillo, “CW nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
    [Crossref]
  2. S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7(1), 10435 (2016).
    [Crossref]
  3. S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
    [Crossref]
  4. R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
    [Crossref]
  5. A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
    [Crossref]
  6. S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
    [Crossref]
  7. M. Humar and S. Hyun Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
    [Crossref]
  8. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref]
  9. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref]
  10. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  11. S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
    [Crossref]
  12. L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
    [Crossref]
  13. A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Opto-mechanical oscillator in a nanoliter droplet,” Opt. Lett. 43(15), 3473–3476 (2018).
    [Crossref]
  14. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
    [Crossref]
  15. K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
    [Crossref]
  16. K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3(6), 585–591 (2016).
    [Crossref]
  17. K. Han, J. Suh, and G. Bahl, “Optomechanical non-contact measurement of microparticle compressibility in liquids,” Opt. Express 26(24), 31908–31916 (2018).
    [Crossref]
  18. E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
    [Crossref]
  19. M. Sumetsky, “Optical bottle microresonators,” Prog. Quantum Electron. 64, 1–30 (2019).
    [Crossref]
  20. M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
    [Crossref]
  21. M. Sumetsky, Y. Dulashko, and R. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
    [Crossref]
  22. Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, and C.-H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25(4), 4046–4053 (2017).
    [Crossref]
  23. S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
    [Crossref]
  24. K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
    [Crossref]
  25. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36(23), 4536–4538 (2011).
    [Crossref]
  26. J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
    [Crossref]
  27. X. Chen, L. Fu, Q. Lu, X. Wu, and S. Xie, “Packaged droplet microresonator for thermal sensing with high sensitivity,” Sensors 18(11), 3881 (2018).
    [Crossref]
  28. T. Muñoz-Hernández, E. Reyes-Vera, and P. Torres, “tunable Whispering Gallery Mode photonic Device Based on Microstructured optical fiber with internal electrodes,” Sci. Rep. 9(1), 12083 (2019).
    [Crossref]
  29. S. Zhu, L. Shi, S. Yuan, X. Xu, and X. Zhang, “All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles,” Opt. Lett. 42(24), 5133–5136 (2017).
    [Crossref]
  30. Q. Lu, S. Liu, X. Wu, L. Liu, and L. Xu, “Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators,” Opt. Lett. 41(8), 1736–1739 (2016).
    [Crossref]
  31. Q. Lu, J. Liao, S. Liu, X. Wu, L. Liu, and L. Xu, “Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing,” Opt. Express 24(18), 20855–20861 (2016).
    [Crossref]
  32. F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photonics Res. 5(6), B29–B33 (2017).
    [Crossref]
  33. C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
    [Crossref]
  34. G. Senthil Murugan, M. Petrovich, Y. Jung, J. Wilkinson, and M. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
    [Crossref]
  35. D. L. Vitullo, S. Zaki, G. Gardosi, B. J. Mangan, R. S. Windeler, M. Brodsky, and M. Sumetsky, “Tunable SNAP microresonators via internal ohmic heating,” Opt. Lett. 43(17), 4316–4319 (2018).
    [Crossref]
  36. Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
    [Crossref]
  37. S. Kitsinelis, R. Devonshire, D. Stone, and R. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D: Appl. Phys. 38(17), 3208–3216 (2005).
    [Crossref]
  38. O. Kleppa, “Ultrasonic Velocities of Sound in Some Liquid Metals,” J. Chem. Phys. 17(7), 668 (1949).
    [Crossref]
  39. J. A. Beattie, B. E. Blaisdell, J. Kaye, H. T. Gerry, and C. A. Johnson, “An experimental study of the absolute temperature scale VIII. The thermal expansion and compressibility of vitreous silica and the thermal dilation of mercury,” in Proceedings of the American Academy of Arts and Sciences, (JSTOR, 1941), 371–388.
  40. K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J.: Spec. Top. 223(10), 1937–1947 (2014).
    [Crossref]
  41. Q. Wang, S. Liu, L. Liu, and L. Xu, “Optomechanics in anisotropic liquid crystal-filled micro-bubble resonators,” Opt. Express 27(12), 17051–17060 (2019).
    [Crossref]
  42. M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
    [Crossref]
  43. X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).
  44. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]

2019 (3)

M. Sumetsky, “Optical bottle microresonators,” Prog. Quantum Electron. 64, 1–30 (2019).
[Crossref]

T. Muñoz-Hernández, E. Reyes-Vera, and P. Torres, “tunable Whispering Gallery Mode photonic Device Based on Microstructured optical fiber with internal electrodes,” Sci. Rep. 9(1), 12083 (2019).
[Crossref]

Q. Wang, S. Liu, L. Liu, and L. Xu, “Optomechanics in anisotropic liquid crystal-filled micro-bubble resonators,” Opt. Express 27(12), 17051–17060 (2019).
[Crossref]

2018 (7)

D. L. Vitullo, S. Zaki, G. Gardosi, B. J. Mangan, R. S. Windeler, M. Brodsky, and M. Sumetsky, “Tunable SNAP microresonators via internal ohmic heating,” Opt. Lett. 43(17), 4316–4319 (2018).
[Crossref]

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

X. Chen, L. Fu, Q. Lu, X. Wu, and S. Xie, “Packaged droplet microresonator for thermal sensing with high sensitivity,” Sensors 18(11), 3881 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Opto-mechanical oscillator in a nanoliter droplet,” Opt. Lett. 43(15), 3473–3476 (2018).
[Crossref]

K. Han, J. Suh, and G. Bahl, “Optomechanical non-contact measurement of microparticle compressibility in liquids,” Opt. Express 26(24), 31908–31916 (2018).
[Crossref]

2017 (4)

2016 (7)

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Q. Lu, S. Liu, X. Wu, L. Liu, and L. Xu, “Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators,” Opt. Lett. 41(8), 1736–1739 (2016).
[Crossref]

Q. Lu, J. Liao, S. Liu, X. Wu, L. Liu, and L. Xu, “Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing,” Opt. Express 24(18), 20855–20861 (2016).
[Crossref]

K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3(6), 585–591 (2016).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7(1), 10435 (2016).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
[Crossref]

2015 (2)

M. Humar and S. Hyun Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
[Crossref]

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

2014 (4)

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J.: Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

2013 (4)

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref]

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

2011 (2)

2010 (3)

M. Sumetsky, Y. Dulashko, and R. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
[Crossref]

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

2009 (1)

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref]

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

2005 (1)

S. Kitsinelis, R. Devonshire, D. Stone, and R. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D: Appl. Phys. 38(17), 3208–3216 (2005).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

1994 (1)

H.-B. Lin and A. Campillo, “CW nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[Crossref]

1949 (1)

O. Kleppa, “Ultrasonic Velocities of Sound in Some Liquid Metals,” J. Chem. Phys. 17(7), 668 (1949).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

Asano, M.

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Avino, S.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Opto-mechanical oscillator in a nanoliter droplet,” Opt. Lett. 43(15), 3473–3476 (2018).
[Crossref]

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Bahl, G.

K. Han, J. Suh, and G. Bahl, “Optomechanical non-contact measurement of microparticle compressibility in liquids,” Opt. Express 26(24), 31908–31916 (2018).
[Crossref]

K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3(6), 585–591 (2016).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J.: Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
[Crossref]

Baker, C.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Baker, C. G.

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

Beattie, J. A.

J. A. Beattie, B. E. Blaisdell, J. Kaye, H. T. Gerry, and C. A. Johnson, “An experimental study of the absolute temperature scale VIII. The thermal expansion and compressibility of vitreous silica and the thermal dilation of mercury,” in Proceedings of the American Academy of Arts and Sciences, (JSTOR, 1941), 371–388.

Benson, O.

Blaisdell, B. E.

J. A. Beattie, B. E. Blaisdell, J. Kaye, H. T. Gerry, and C. A. Johnson, “An experimental study of the absolute temperature scale VIII. The thermal expansion and compressibility of vitreous silica and the thermal dilation of mercury,” in Proceedings of the American Academy of Arts and Sciences, (JSTOR, 1941), 371–388.

Bowen, W. P.

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

Brodsky, M.

Campillo, A.

H.-B. Lin and A. Campillo, “CW nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[Crossref]

Carmon, T.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7(1), 10435 (2016).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J.: Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chen, W.

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Chen, X.

X. Chen, L. Fu, Q. Lu, X. Wu, and S. Xie, “Packaged droplet microresonator for thermal sensing with high sensitivity,” Sensors 18(11), 3881 (2018).
[Crossref]

Chen, Y.

Chormaic, S. N.

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Cocking, A.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

Dahan, R.

De Natale, P.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Opto-mechanical oscillator in a nanoliter droplet,” Opt. Lett. 43(15), 3473–3476 (2018).
[Crossref]

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Devonshire, R.

S. Kitsinelis, R. Devonshire, D. Stone, and R. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D: Appl. Phys. 38(17), 3208–3216 (2005).
[Crossref]

Dong, C.-H.

Ducci, S.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Dulashko, Y.

Fan, X.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J.: Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

Fan, X. D.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
[Crossref]

Fang, W.

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photonics Res. 5(6), B29–B33 (2017).
[Crossref]

Favero, I.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Forstner, S.

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

Fu, L.

X. Chen, L. Fu, Q. Lu, X. Wu, and S. Xie, “Packaged droplet microresonator for thermal sensing with high sensitivity,” Sensors 18(11), 3881 (2018).
[Crossref]

Gagliardi, G.

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Opto-mechanical oscillator in a nanoliter droplet,” Opt. Lett. 43(15), 3473–3476 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Gardosi, G.

Gerry, H. T.

J. A. Beattie, B. E. Blaisdell, J. Kaye, H. T. Gerry, and C. A. Johnson, “An experimental study of the absolute temperature scale VIII. The thermal expansion and compressibility of vitreous silica and the thermal dilation of mercury,” in Proceedings of the American Academy of Arts and Sciences, (JSTOR, 1941), 371–388.

Gil-Santos, E.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Giorgini, A.

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Opto-mechanical oscillator in a nanoliter droplet,” Opt. Lett. 43(15), 3473–3476 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Gomez, C.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Gong, Q.

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

Gu, F.

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photonics Res. 5(6), B29–B33 (2017).
[Crossref]

Guo, G.-C.

Guo, Z.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Han, K.

Harris, G. I.

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

He, X.

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

Hease, W.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Henze, R.

Hernández-Rodríguez, M.

Huang, S. H.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

Humar, M.

M. Humar and S. Hyun Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
[Crossref]

Hyun Yun, S.

M. Humar and S. Hyun Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
[Crossref]

Ikuta, R.

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Imoto, N.

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Janisch, C.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

Jiang, X.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

Johnson, C. A.

J. A. Beattie, B. E. Blaisdell, J. Kaye, H. T. Gerry, and C. A. Johnson, “An experimental study of the absolute temperature scale VIII. The thermal expansion and compressibility of vitreous silica and the thermal dilation of mercury,” in Proceedings of the American Academy of Arts and Sciences, (JSTOR, 1941), 371–388.

Jung, Y.

Junge, C.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref]

Kaminski, S.

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

Kaye, J.

J. A. Beattie, B. E. Blaisdell, J. Kaye, H. T. Gerry, and C. A. Johnson, “An experimental study of the absolute temperature scale VIII. The thermal expansion and compressibility of vitreous silica and the thermal dilation of mercury,” in Proceedings of the American Academy of Arts and Sciences, (JSTOR, 1941), 371–388.

Kim, J.

Kim, J. H.

Kim, K. H.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Kitsinelis, S.

S. Kitsinelis, R. Devonshire, D. Stone, and R. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D: Appl. Phys. 38(17), 3208–3216 (2005).
[Crossref]

Kleppa, O.

O. Kleppa, “Ultrasonic Velocities of Sound in Some Liquid Metals,” J. Chem. Phys. 17(7), 668 (1949).
[Crossref]

Krause, A.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Labrador-Páez, L.

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

Lemaître, A.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Leo, G.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Liao, J.

Lin, H.-B.

H.-B. Lin and A. Campillo, “CW nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[Crossref]

Liu, J.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
[Crossref]

Liu, L.

Liu, S.

Liu, Z.

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

Loock, H. P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Lu, Q.

Ma, Q.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Maayani, S.

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7(1), 10435 (2016).
[Crossref]

Malara, P.

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Opto-mechanical oscillator in a nanoliter droplet,” Opt. Lett. 43(15), 3473–3476 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Mangan, B. J.

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Martin, L. L.

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7(1), 10435 (2016).
[Crossref]

Martín, I. R.

Muñoz-Hernández, T.

T. Muñoz-Hernández, E. Reyes-Vera, and P. Torres, “tunable Whispering Gallery Mode photonic Device Based on Microstructured optical fiber with internal electrodes,” Sci. Rep. 9(1), 12083 (2019).
[Crossref]

Nguyen, D.

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

O’Shea, D.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref]

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Özdemir, SK

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Peng, B.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

Petrovich, M.

Pollinger, M.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref]

Qian, Y.-J.

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

Rauschenbeutel, A.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref]

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref]

Reyes-Vera, E.

T. Muñoz-Hernández, E. Reyes-Vera, and P. Torres, “tunable Whispering Gallery Mode photonic Device Based on Microstructured optical fiber with internal electrodes,” Sci. Rep. 9(1), 12083 (2019).
[Crossref]

Rossmann, T.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Sachkou, Y. P.

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

Sawadsky, A.

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

Seifert, T.

Senthil Murugan, G.

Sfendla, Y. L.

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

Shen, Z.

Shi, K.

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

Shi, L.

Soler-Carracedo, K.

Stone, D.

S. Kitsinelis, R. Devonshire, D. Stone, and R. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D: Appl. Phys. 38(17), 3208–3216 (2005).
[Crossref]

Suh, J.

Sumetsky, M.

Sun, Y.

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

Takeuchi, Y.

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Tang, S.-J.

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

Tomes, M.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

Torres, P.

T. Muñoz-Hernández, E. Reyes-Vera, and P. Torres, “tunable Whispering Gallery Mode photonic Device Based on Microstructured optical fiber with internal electrodes,” Sci. Rep. 9(1), 12083 (2019).
[Crossref]

Tozer, R.

S. Kitsinelis, R. Devonshire, D. Stone, and R. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D: Appl. Phys. 38(17), 3208–3216 (2005).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Vitullo, D. L.

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

Volz, J.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref]

Wang, H.

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photonics Res. 5(6), B29–B33 (2017).
[Crossref]

Wang, Q.

Ward, J.

Ward, J. M.

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Warken, F.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref]

Wilkinson, J.

Windeler, R.

Windeler, R. S.

Wu, C.

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

Wu, X.

Xiao, Y.-F.

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xie, F.

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photonics Res. 5(6), B29–B33 (2017).
[Crossref]

Xie, S.

X. Chen, L. Fu, Q. Lu, X. Wu, and S. Xie, “Packaged droplet microresonator for thermal sensing with high sensitivity,” Sensors 18(11), 3881 (2018).
[Crossref]

Xu, L.

Xu, X.

Yamamoto, T.

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Yang, L.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yang, Y.

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Yannai, M.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

Yao, N.

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photonics Res. 5(6), B29–B33 (2017).
[Crossref]

Yuan, S.

Zaki, S.

Zervas, M.

Zhang, X.

Zhou, Z.-H.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Zhu, K.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J.: Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

Zhu, S.

Zhuang, S.

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photonics Res. 5(6), B29–B33 (2017).
[Crossref]

Zou, C.-L.

Zullo, R.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Adv. Mater. (1)

S.-J. Tang, Z. Liu, Y.-J. Qian, K. Shi, Y. Sun, C. Wu, Q. Gong, and Y.-F. Xiao, “A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer,” Adv. Mater. 30(50), 1804556 (2018).
[Crossref]

Adv. Opt. Mater. (1)

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Eur. Phys. J.: Spec. Top. (1)

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J.: Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

J. Chem. Phys. (1)

O. Kleppa, “Ultrasonic Velocities of Sound in Some Liquid Metals,” J. Chem. Phys. 17(7), 668 (1949).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Kitsinelis, R. Devonshire, D. Stone, and R. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D: Appl. Phys. 38(17), 3208–3216 (2005).
[Crossref]

Laser Photonics Rev. (1)

M. Asano, Y. Takeuchi, W. Chen, ŞK Özdemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photonics Rev. 10(4), 603–611 (2016).
[Crossref]

Light: Sci. Appl. (1)

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2(11), e110 (2013).
[Crossref]

Meas. Sci. Technol. (1)

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Nat. Commun. (2)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(1), 1994 (2013).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7(1), 10435 (2016).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (1)

E. Gil-Santos, C. Baker, D. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref]

Nat. Photonics (3)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

M. Humar and S. Hyun Yun, “Intracellular microlasers,” Nat. Photonics 9(9), 572–576 (2015).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Opt. Express (7)

Opt. Lett. (6)

Optica (2)

Photonics Res. (2)

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photonics Res. 5(6), B29–B33 (2017).
[Crossref]

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ŞK Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photonics Res. 6(5), 346–356 (2018).
[Crossref]

Phys. Rev. Lett. (4)

H.-B. Lin and A. Campillo, “CW nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120(7), 073902 (2018).
[Crossref]

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref]

Prog. Quantum Electron. (1)

M. Sumetsky, “Optical bottle microresonators,” Prog. Quantum Electron. 64, 1–30 (2019).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Sci. Rep. (1)

T. Muñoz-Hernández, E. Reyes-Vera, and P. Torres, “tunable Whispering Gallery Mode photonic Device Based on Microstructured optical fiber with internal electrodes,” Sci. Rep. 9(1), 12083 (2019).
[Crossref]

Sensors (1)

X. Chen, L. Fu, Q. Lu, X. Wu, and S. Xie, “Packaged droplet microresonator for thermal sensing with high sensitivity,” Sensors 18(11), 3881 (2018).
[Crossref]

Other (2)

X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. L. Sfendla, Y. P. Sachkou, S. Forstner, and W. P. Bowen, “Strong optical coupling through superfluid Brillouin lasing,” arXiv preprint:1907.06811 (2019).

J. A. Beattie, B. E. Blaisdell, J. Kaye, H. T. Gerry, and C. A. Johnson, “An experimental study of the absolute temperature scale VIII. The thermal expansion and compressibility of vitreous silica and the thermal dilation of mercury,” in Proceedings of the American Academy of Arts and Sciences, (JSTOR, 1941), 371–388.

Supplementary Material (1)

NameDescription
» Visualization 1       Light emission phenomenon when high current is applied on mercury.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of experimental setup. The bubble stems are connected with Au microwire electrodes to control the current of the liquid metal core. VOA: variable optical attenuator; FPC: fiber polarization controller; PD: photoelectric detector; OSC: oscilloscope; RTSA: real-time spectrum analyzer; DAQ: data acquisition. The current of the liquid metal core is controlled by a current source. The liquid is pumped into the microchannel of the MBR using a syringe pump. (b) Schematic of liquid metal MBR. (c) Optical photograph of liquid metal MBR coupled with tapered fiber.
Fig. 2.
Fig. 2. (a) Typical transmission spectrum of empty MBR. (b) Transmission spectrum of liquid metal MBR.
Fig. 3.
Fig. 3. Broadband tuning resonant wavelength by Ohmic heating liquid metal core. (a) Resonant mode spectrum changes as current of mercury increased by step of 50 mA. Inset shows sample emitting blue-green light when the current was 420 mA. (b) Resonant wavelength shift (inset shows Q change) as function of current.
Fig. 4.
Fig. 4. Simulated result for (a) 3-D and (b) 2-D shell displacement field distribution of fundamental mechanical mode of optofluidic liquid metal core MBR; (c) 2-D fluid pressure field distribution of fundamental mechanical mode of optofluidic liquid metal core MBR. Black solid lines indicate boundary of MBR shell. Mechanical frequency versus (d) sound speed (mercury density was fixed at 13539.2 kg/m3) and (e) density of mercury (sound speed was fixed at 1458.9 m/s) were calculated.
Fig. 5.
Fig. 5. Mechanical power spectrum when optofluidic core is filled with (a) air and (b) mercury. (c) Mechanical power spectrum changes caused by increasing the current of mercury with a step of 40 mA. (d) Experimentally measured data (※) versus different currents; red line indicates quadratic fitting of measured data, and blue dotted line indicates calculated result of relative mechanical frequency shift as function of current applied to liquid metal core.
Fig. 6.
Fig. 6. Long time data acquisition of mechanical oscillation spectrogram (a) when current was not applied to liquid-meal core and (b) when current I = 120 mA was applied to liquid metal core.
Fig. 7.
Fig. 7. (a) Mechanical power spectrum with different input pump laser power. (b) 3-dB bandwidth δfm as function of input pump laser power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ λ  =  λ 0 1 n 0 d n d T δ T ,
c  =  1440 0.7 ( T 50 ) ;
ρ  =  13595.05 2.43 T .

Metrics