Abstract

We present an implementation of the single-pixel imaging approach into a terahertz (THz) time-domain spectroscopy (TDS) system. We demonstrate the indirect coherent reconstruction of THz temporal waveforms at each spatial position of an object, without the need of mechanical raster-scanning. First, we exploit such temporal information to realize (far-field) time-of-flight images. In addition, as a proof of concept, we apply a typical compressive sensing algorithm to demonstrate image reconstruction with less than 50% of the total required measurements. Finally, the access to frequency domain is also demonstrated by reconstructing spectral images of an object featuring an absorption line in the THz range. The combination of single-pixel imaging with compressive sensing algorithms allows to reduce both complexity and acquisition time of current THz-TDS imaging systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral terahertz microscopy via nonlinear ghost imaging

Luana Olivieri, Juan S. Totero Gongora, Luke Peters, Vittorio Cecconi, Antonio Cutrona, Jacob Tunesi, Robyn Tucker, Alessia Pasquazi, and Marco Peccianti
Optica 7(2) 186-191 (2020)

Terahertz image reconstruction based on compressed sensing and inverse Fresnel diffraction

Yingjie Shang, Xinke Wang, Wenfeng Sun, Peng Han, Jiasheng Ye, Shengfei Feng, and Yan Zhang
Opt. Express 27(10) 14725-14735 (2019)

Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging

Zhimin Xu and Edmund Y. Lam
J. Opt. Soc. Am. A 27(7) 1638-1646 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” Opt. Express 26(8), 9417 (2018).
    [Crossref]
  2. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
    [Crossref]
  3. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  4. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011 (1996).
    [Crossref]
  5. E. P. J. Parrott and J. A. Zeitler, “Terahertz Time-Domain and Low-Frequency Raman Spectroscopy of Organic Materials,” Appl. Spectrosc. 69(1), 1–25 (2015).
    [Crossref]
  6. J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
    [Crossref]
  7. P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
    [Crossref]
  8. S. L. Dexheimer, Terahertz Spectroscopy : Principles and Applications (CRC Press/Taylor & Francis, 2008).
  9. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  10. I. Duling and D. Zimdars, “Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
    [Crossref]
  11. C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
    [Crossref]
  12. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
    [Crossref]
  13. R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
    [Crossref]
  14. E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys. A 100(3), 585–590 (2010).
    [Crossref]
  15. J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
    [Crossref]
  16. A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
    [Crossref]
  17. H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Toward real-time terahertz imaging,” Adv. Opt. Photonics 10(4), 843 (2018).
    [Crossref]
  18. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
    [Crossref]
  19. K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
    [Crossref]
  20. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [Crossref]
  21. H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Exploiting k-space/frequency duality toward real-time terahertz imaging,” Optica 5(2), 109 (2018).
    [Crossref]
  22. L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-Resolved Nonlinear Ghost Imaging,” ACS Photonics 5(8), 3379–3388 (2018).
    [Crossref]
  23. E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22(13), 16079–16086 (2014).
    [Crossref]
  24. L. Valzania, T. Feurer, P. Zolliker, and E. Hack, “Terahertz ptychography,” Opt. Lett. 43(3), 543 (2018).
    [Crossref]
  25. M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
    [Crossref]
  26. E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
    [Crossref]
  27. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974 (2008).
    [Crossref]
  28. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37(8), 1391 (2012).
    [Crossref]
  29. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507 (2013).
    [Crossref]
  30. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  31. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
    [Crossref]
  32. R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989 (2017).
    [Crossref]
  33. L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).
  34. B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical Recognition With Broadband THz Spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
    [Crossref]
  35. M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
    [Crossref]
  36. L. Bian, J. Suo, Q. Dai, and F. Chen, “Experimental comparison of single-pixel imaging algorithms,” J. Opt. Soc. Am. A 35(1), 78 (2018).
    [Crossref]
  37. J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7(3), 260–267 (2017).
    [Crossref]

2019 (2)

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

2018 (6)

2017 (5)

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref]

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7(3), 260–267 (2017).
[Crossref]

R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989 (2017).
[Crossref]

M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref]

2016 (2)

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

2015 (1)

2014 (2)

E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22(13), 16079–16086 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

2013 (2)

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507 (2013).
[Crossref]

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

2012 (1)

2011 (3)

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2010 (1)

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys. A 100(3), 585–590 (2010).
[Crossref]

2009 (1)

I. Duling and D. Zimdars, “Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
[Crossref]

2008 (4)

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974 (2008).
[Crossref]

2007 (1)

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical Recognition With Broadband THz Spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

2006 (1)

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
[Crossref]

2005 (1)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

1996 (2)

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011 (1996).
[Crossref]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

Abraham, E.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys. A 100(3), 585–590 (2010).
[Crossref]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974 (2008).
[Crossref]

Basini, M.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Baxter, J. B.

J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref]

Bian, L.

Bonetti, S.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Busch, S.

Candes, E. J.

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Cecconi, V.

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974 (2008).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chattopadhyay, G.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Chen, F.

Citrin, D. S.

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref]

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7(3), 260–267 (2017).
[Crossref]

Clerici, M.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Cooper, K. B.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Cutrona, A.

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Dai, Q.

Delagnes, J. C.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys. A 100(3), 585–590 (2010).
[Crossref]

Dengler, R. J.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Dexheimer, S. L.

S. L. Dexheimer, Terahertz Spectroscopy : Principles and Applications (CRC Press/Taylor & Francis, 2008).

Dong, J.

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref]

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7(3), 260–267 (2017).
[Crossref]

Duling, I.

I. Duling and D. Zimdars, “Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
[Crossref]

Edgar, M. P.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref]

Feurer, T.

Fischer, B. M.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical Recognition With Broadband THz Spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Fu, W.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Gibson, G. M.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

Gongora, J. S. T.

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Goryashko, V.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Govorov, A. O.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Guerboukha, H.

H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Exploiting k-space/frequency duality toward real-time terahertz imaging,” Optica 5(2), 109 (2018).
[Crossref]

H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Toward real-time terahertz imaging,” Adv. Opt. Photonics 10(4), 843 (2018).
[Crossref]

Guglietta, G. W.

J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref]

Hack, E.

Hebling, J.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Helm, H.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical Recognition With Broadband THz Spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Hendry, E.

R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989 (2017).
[Crossref]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

Hobson, P.

Hobson, P. A.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

Hornett, S. M.

R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989 (2017).
[Crossref]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

Hu, Q.

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011 (1996).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical Recognition With Broadband THz Spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Jördens, C.

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
[Crossref]

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Khorashad, L. K.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Koch, M.

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37(8), 1391 (2012).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
[Crossref]

Krasilnikov, M.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Kumar, S.

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
[Crossref]

Laman, N.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Lee, A. W. M.

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
[Crossref]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, Y.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Llombart, N.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Locquet, A.

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7(3), 260–267 (2017).
[Crossref]

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref]

Luo, Y.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Mazhorova, A.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Melis, M.

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref]

Meng, L.-T.

M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref]

Mittleman, D. M.

D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” Opt. Express 26(8), 9417 (2018).
[Crossref]

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974 (2008).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011 (1996).
[Crossref]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Morandotti, R.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Moravec, M. L.

Mounaix, P.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys. A 100(3), 585–590 (2010).
[Crossref]

Naccache, R.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Nallappan, K.

H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Exploiting k-space/frequency duality toward real-time terahertz imaging,” Optica 5(2), 109 (2018).
[Crossref]

H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Toward real-time terahertz imaging,” Adv. Opt. Photonics 10(4), 843 (2018).
[Crossref]

Nikitin, A. Y.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011 (1996).
[Crossref]

Olivieri, L.

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-Resolved Nonlinear Ghost Imaging,” ACS Photonics 5(8), 3379–3388 (2018).
[Crossref]

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Padgett, M. J.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref]

R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989 (2017).
[Crossref]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507 (2013).
[Crossref]

Parrott, E. P. J.

Pasquazi, A.

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-Resolved Nonlinear Ghost Imaging,” ACS Photonics 5(8), 3379–3388 (2018).
[Crossref]

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Peccianti, M.

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-Resolved Nonlinear Ghost Imaging,” ACS Photonics 5(8), 3379–3388 (2018).
[Crossref]

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Peters, L.

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Phillips, D. B.

Piccoli, R.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Qin, Q.

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
[Crossref]

Radwell, N.

M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref]

Razzari, L.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Redo-Sanchez, A.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Reno, J. L.

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
[Crossref]

Salén, P.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Scheller, M.

Scherger, B.

Schulkin, B.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Shamuilov, G.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507 (2013).
[Crossref]

Siegel, P. H.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Skorobogatiy, M.

H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Toward real-time terahertz imaging,” Adv. Opt. Photonics 10(4), 843 (2018).
[Crossref]

H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Exploiting k-space/frequency duality toward real-time terahertz imaging,” Optica 5(2), 109 (2018).
[Crossref]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Stantchev, R. I.

R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989 (2017).
[Crossref]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

Sun, B.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

Sun, M.-J.

M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref]

Suo, J.

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Thomas, B.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Tibai, Z.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Tongue, T.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Totero Gongora, J. S.

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-Resolved Nonlinear Ghost Imaging,” ACS Photonics 5(8), 3379–3388 (2018).
[Crossref]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tucker, R.

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Tunesi, J.

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Valzania, L.

Vetrone, F.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Wakin, M. B.

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507 (2013).
[Crossref]

Williams, B. S.

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
[Crossref]

Wu, X.

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7(3), 260–267 (2017).
[Crossref]

Yang, K.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Yang, X.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Younus, A.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys. A 100(3), 585–590 (2010).
[Crossref]

Zeitler, J. A.

Zhao, X.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Zhaunerchyk, V.

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Zimdars, D.

I. Duling and D. Zimdars, “Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
[Crossref]

Zolliker, P.

ACS Photonics (1)

L. Olivieri, J. S. Totero Gongora, A. Pasquazi, and M. Peccianti, “Time-Resolved Nonlinear Ghost Imaging,” ACS Photonics 5(8), 3379–3388 (2018).
[Crossref]

Adv. Opt. Photonics (1)

H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Toward real-time terahertz imaging,” Adv. Opt. Photonics 10(4), 843 (2018).
[Crossref]

Anal. Chem. (1)

J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref]

Appl. Phys. A (1)

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys. A 100(3), 585–590 (2010).
[Crossref]

Appl. Phys. Lett. (3)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25meters),” Appl. Phys. Lett. 89(14), 141125 (2006).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

IEEE Signal Process. Mag. (1)

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7(3), 260–267 (2017).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (2)

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Photonics (3)

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

I. Duling and D. Zimdars, “Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Opt. Eng. (1)

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (2)

Phys. Rep. (1)

P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836-837, 1–74 (2019).
[Crossref]

Proc. IEEE (1)

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical Recognition With Broadband THz Spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Sci. Adv. (1)

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref]

Sci. Rep. (2)

M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref]

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref]

Trends Biotechnol. (1)

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Other (2)

S. L. Dexheimer, Terahertz Spectroscopy : Principles and Applications (CRC Press/Taylor & Francis, 2008).

L. Olivieri, J. S. T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, “Hyperspectral terahertz microscopy via nonlinear ghost imaging,” arXiv:1910.11259 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Experimental setup: modified version of a THz-TDS system. The beam from the fs-laser is split into three lines (BS-beam splitter), one generates the THz pulse, one is used as probe in the electro-optic sampling crystal and the last one is employed for THz modulation. (b) THz modulation technique: spatial patterns are encoded onto the infrared laser beam by means of a digital micro-mirror device (DMD); the patterned beam illuminates a Si-plate where it generates photo-carriers. The THz beam passing through the Si-plate, right after photo-excitation, is locally reflected and thus acquires the same spatial pattern of the infrared laser beam. Detection via electro-optic sampling is performed with a zinc telluride (ZnTe) crystal, a quarter waveplate (QWP), a Wollastone prism (WP), and a balanced photodetector (BPD).
Fig. 2.
Fig. 2. (top) HDPE sample with letters “T” 2 mm deep and “Z” 1 mm deep. (left) detector output for three of the spatial patterns used. The THz waveforms are multi-pulse, due to THz waves arriving at different times after passing through the sample at different positions. (right) THz electric field reconstructed in time at three selected pixels using the total amount of patterns.
Fig. 3.
Fig. 3. Time-of-flight images: (a) 256-pixel image reconstructed using the local thickness of the HDPE sample described in the text. The thickness is retrieved with the relative time delay of the THz pulses at each spatial position. (b) Images retrieved with various compressive ratios (CR, number of measurements/number of pixels): from top-left CR = 100%, CR = 80%, CR = 60% and CR = 40%. The Root Mean Squared Error (ERMS) is calculated averaging the error at the THz wave peak over all the pixels in the image.
Fig. 4.
Fig. 4. Hyper-spectral images: (a) sample: L-shaped pellet made of a 1:1 mixture of lactose and PTFE (index of refraction 1.45 at 1 THz) and a rectangular pellet made of PTFE. (b) 64-pixel spectral image at 1.0 THz. (c) 64-pixel spectral image at 1.3 THz (d) example of THz spectra of four selected pixels, obtained by direct Fourier-transformation of the time-domain THz waveforms reconstructed at each pixel position: for the pixels with lactose the absorption line at 1.3 THz is clearly visible.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W = H S
W ( t ) = H S ( t )

Metrics