Abstract

We report on double-resonant highly efficient sum-frequency generation in the blue range. The system consists of a 10-mm-long periodically poled KTP crystal placed in a double-resonant bow-tie cavity and pumped by a fiber laser at 1064.5 nm and a Ti:sapphire laser at 849.2 nm. An optical power of 375 mW at 472.4 nm in a TEM00 mode was generated with pump powers of 250 mW at 849.2 nm and 200 mW at 1064.5 nm coupled into the double-resonant ring resonator with 88% mode-matching. The resulting internal conversion efficiency of 95(±3)% of the photons mode-matched to the cavity constitutes, to the best of our knowledge, the highest overall achieved quantum conversion efficiency using continuous-wave pumping. Very high conversion efficiency is rendered possible due to very low intracavity loss on the level of 0.3% and high nonlinear conversion coefficient up to 0.045(0.015) W−1. Power stability measurements performed over one hour show a stability of 0.8%. The generated blue light can be tuned within 5 nm around the center wavelength of 472.4 nm, limited by the phase-matching of our nonlinear crystal. This can however be expanded to cover the entire blue spectrum (420 nm to 510 nm) by proper choice of nonlinear crystals and pump lasers. Our experimental results agree very well with analytical and numerical simulations taking into account cavity impedance matching and depletion of the pump fields.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sum-frequency generation of 589 nm light with near-unit efficiency

Emmanuel Mimoun, Luigi De Sarlo, Jean-Jacques Zondy, Jean Dalibard, and Fabrice Gerbier
Opt. Express 16(23) 18684-18691 (2008)

Efficient sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual wavelength enhancement

Hiroshi Kumagai, Katsumi Midorikawa, Tetsuaki Iwane, and Minoru Obara
Opt. Lett. 28(20) 1969-1971 (2003)

Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide

Tadashi Nishikawa, Akira Ozawa, Yoshiki Nishida, Masaki Asobe, Feng-Lei Hong, and Theodor W. Hänsch
Opt. Express 17(20) 17792-17800 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
    [Crossref]
  2. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
    [Crossref]
  3. H. Wang, Y. Kawahito, R. Yoshida, Y. Nakashima, and K. Shiokawa, “Development of a high-power blue laser (445 nm) for material processing,” Opt. Lett. 42(12), 2251–2254 (2017).
    [Crossref]
  4. A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
    [Crossref]
  5. H. Cankaya, A.-L. Calendron, H. Suchowski, and F. X. Kärtner, “Highly efficient broadband sum-frequency generation in the visible wavelength range,” Opt. Lett. 39(10), 2912–2915 (2014).
    [Crossref]
  6. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
    [Crossref]
  7. S. Ast, R. Moghadas Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett. 36(17), 3467–3469 (2011).
    [Crossref]
  8. X.-Y. Cui, Q. Shen, M.-Chen Yan, Ch. Zeng, T. Yuan, W.-Zhuo Zhang, X.-C. Yao, C.-Zhi Peng, X. Jiang, Y.-A. Chen, and J.-W. Pan, “High-power 671-nm laser by second-harmonic generation with 93% efficiency in an external ring cavity,” Opt. Lett. 43(8), 1666–1669 (2018).
    [Crossref]
  9. S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
    [Crossref]
  10. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28(22), 2219–2221 (2003).
    [Crossref]
  11. E. Mimoun, L. De Sarlo, J. -J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express 16(23), 18684–18691 (2008).
    [Crossref]
  12. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
    [Crossref]
  13. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
    [Crossref]
  14. S. Johansson, S. Wang, V. Pasiskevicius, and F. Laurell, “Compact 492-nm light source based on sum-frequency mixing,” Opt. Express 13(7), 2590–2595 (2005).
    [Crossref]
  15. A. K. Hansen, P. E. Andersen, O. B. Jensen, B. Sumpf, G. Erbert, and P. M. Petersen, “Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals,” Opt. Lett. 40(23), 5526–5529 (2015).
    [Crossref]
  16. E. C. Cheung, K. Koch, and G. T. Moore, “Frequency upconversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19(23), 1967–1969 (1994).
    [Crossref]
  17. W. P. Risk and W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17(10), 707–709 (1992).
    [Crossref]
  18. H. M. Kretschmann, F. Heine, G. Huber, and T. Halldórsson, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer,” Opt. Lett. 22(19), 1461–1463 (1997).
    [Crossref]
  19. J. D. Vance, C.-Y. She, and H. Moosmüller, “Continuous-wave, all-solid-state, single-frequency 400-mw source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37(21), 4891–4896 (1998).
    [Crossref]
  20. K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, and C. Fabre, “Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator,” Phys. Rev. A 64(3), 033815 (2001).
    [Crossref]
  21. G. T. Moore, “Resonant sum-frequency generation,” IEEE J. Quantum Electron. 38(1), 12–18 (2002).
    [Crossref]
  22. R. W. Boyd, Nonlinear Optics, Elsevier, 2003.
  23. Y. Kaneda and S. Kubota, “Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator,” Appl. Opt. 36(30), 7766–7775 (1997).
    [Crossref]
  24. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [Crossref]
  25. N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
    [Crossref]
  26. Y. F. Lü, X. D. Yin, J. Xia, L. Bao, and X. H. Zhang, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm,” Laser Phys. Lett. 6(12), 860–863 (2009).
    [Crossref]
  27. M. Lassen, M. Sabuncu, P. Buchhave, and U. L. Andersen, “Generation of polarization squeezing with periodically poled KTP at 1064 nm,” Opt. Express 15(8), 5077–5082 (2007).
    [Crossref]
  28. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  29. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  30. L. Neuhaus, “PyRPL”, https://github.com/lneuhaus/pyrpl (2017).
  31. B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
    [Crossref]
  32. J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
    [Crossref]
  33. O. B. Jensen and P. M. Petersen, “Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser,” Appl. Phys. Lett. 103(14), 141107 (2013).
    [Crossref]
  34. S. Tjörnhammar, V. Maestroni, A. Zukauskas, T. K. Uždavinys, C. Canalias, F. Laurell, and V. Pasiskevicius, “Infrared absorption in KTP isomorphs induced with blue picosecond pulses,” Opt. Mater. Express 5(12), 2951–2963 (2015).
    [Crossref]
  35. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39(27), 5058 (2000).
    [Crossref]
  36. G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41(3), 259–303 (2006).
    [Crossref]
  37. F. Khalili and E. S. Polzik, “Overcoming the SQL in gravitational wave detectors using spin systems with negative effective mass,” Phys. Rev. Lett. 121(3), 031101 (2018).
    [Crossref]

2018 (3)

X.-Y. Cui, Q. Shen, M.-Chen Yan, Ch. Zeng, T. Yuan, W.-Zhuo Zhang, X.-C. Yao, C.-Zhi Peng, X. Jiang, Y.-A. Chen, and J.-W. Pan, “High-power 671-nm laser by second-harmonic generation with 93% efficiency in an external ring cavity,” Opt. Lett. 43(8), 1666–1669 (2018).
[Crossref]

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

F. Khalili and E. S. Polzik, “Overcoming the SQL in gravitational wave detectors using spin systems with negative effective mass,” Phys. Rev. Lett. 121(3), 031101 (2018).
[Crossref]

2017 (3)

H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
[Crossref]

H. Wang, Y. Kawahito, R. Yoshida, Y. Nakashima, and K. Shiokawa, “Development of a high-power blue laser (445 nm) for material processing,” Opt. Lett. 42(12), 2251–2254 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

2016 (2)

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (1)

O. B. Jensen and P. M. Petersen, “Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser,” Appl. Phys. Lett. 103(14), 141107 (2013).
[Crossref]

2011 (1)

2009 (1)

Y. F. Lü, X. D. Yin, J. Xia, L. Bao, and X. H. Zhang, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm,” Laser Phys. Lett. 6(12), 860–863 (2009).
[Crossref]

2008 (2)

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

E. Mimoun, L. De Sarlo, J. -J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express 16(23), 18684–18691 (2008).
[Crossref]

2007 (2)

M. Lassen, M. Sabuncu, P. Buchhave, and U. L. Andersen, “Generation of polarization squeezing with periodically poled KTP at 1064 nm,” Opt. Express 15(8), 5077–5082 (2007).
[Crossref]

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

2006 (1)

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41(3), 259–303 (2006).
[Crossref]

2005 (2)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

S. Johansson, S. Wang, V. Pasiskevicius, and F. Laurell, “Compact 492-nm light source based on sum-frequency mixing,” Opt. Express 13(7), 2590–2595 (2005).
[Crossref]

2003 (1)

2002 (1)

G. T. Moore, “Resonant sum-frequency generation,” IEEE J. Quantum Electron. 38(1), 12–18 (2002).
[Crossref]

2001 (1)

K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, and C. Fabre, “Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator,” Phys. Rev. A 64(3), 033815 (2001).
[Crossref]

2000 (1)

1999 (1)

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

1998 (1)

1997 (2)

1994 (1)

1992 (1)

1991 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

Allgaier, M.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Andersen, P. E.

Andersen, U. L.

Ansari, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Ast, S.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

Bao, L.

Y. F. Lü, X. D. Yin, J. Xia, L. Bao, and X. H. Zhang, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm,” Laser Phys. Lett. 6(12), 860–863 (2009).
[Crossref]

Bienfang, J. C.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Boulanger, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, Elsevier, 2003.

Brecht, B.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Buchhave, P.

Calendron, A.-L.

Canalias, C.

Cankaya, H.

Carreño, S. J. M.

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

Chen, Y.-A.

Cheung, E. C.

Coudreau, T.

K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, and C. Fabre, “Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator,” Phys. Rev. A 64(3), 033815 (2001).
[Crossref]

Cui, X.-Y.

Dalibard, J.

de Araújo, C. B.

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

De Sarlo, L.

Denman, C. A.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Eberle, T.

Eigner, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Erbert, G.

Fabre, C.

K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, and C. Fabre, “Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator,” Phys. Rev. A 64(3), 033815 (2001).
[Crossref]

Fabris, Z. V.

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

Fève, J. P.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Galbács, G.

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41(3), 259–303 (2006).
[Crossref]

Gerbier, F.

Geskus, D.

Gisin, N.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

Gomes, A. S. L.

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

Grime, B. W.

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Halldórsson, T.

Han, Z. H.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Hansen, A. K.

Hansson, G.

Harder, G.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Heine, F.

Hillman, P. D.

Hirohashi, J.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Huber, G.

Ismail, N.

-J. Zondy, J.

Jensen, O. B.

A. K. Hansen, P. E. Andersen, O. B. Jensen, B. Sumpf, G. Erbert, and P. M. Petersen, “Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals,” Opt. Lett. 40(23), 5526–5529 (2015).
[Crossref]

O. B. Jensen and P. M. Petersen, “Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser,” Appl. Phys. Lett. 103(14), 141107 (2013).
[Crossref]

Jiang, X.

Johansson, S.

Kaneda, Y.

Karlsson, H.

Kärtner, F. X.

Katori, H.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

Kawahito, Y.

Khalili, F.

F. Khalili and E. S. Polzik, “Overcoming the SQL in gravitational wave detectors using spin systems with negative effective mass,” Phys. Rev. Lett. 121(3), 031101 (2018).
[Crossref]

Kimble, H. J.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Koch, K.

Kores, C. C.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Kozlovsky, W. J.

Kretschmann, H. M.

Kubota, S.

Kwok, S. J. J.

H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
[Crossref]

Lassen, M.

Lastzka, N.

Laurell, F.

Li, Y.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Liu, S.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Liu, S. L.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Lü, Y. F.

Y. F. Lü, X. D. Yin, J. Xia, L. Bao, and X. H. Zhang, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm,” Laser Phys. Lett. 6(12), 860–863 (2009).
[Crossref]

Maestroni, V.

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Maia, L. J. Q.

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

Maître, A.

K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, and C. Fabre, “Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator,” Phys. Rev. A 64(3), 033815 (2001).
[Crossref]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Martinelli, M.

K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, and C. Fabre, “Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator,” Phys. Rev. A 64(3), 033815 (2001).
[Crossref]

Mehmet, M.

Ménaert, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Mimoun, E.

Moghadas Nia, R.

Moore, G. T.

Moosmüller, H.

Moura, A. L.

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Nakashima, Y.

Neuhaus, L.

L. Neuhaus, “PyRPL”, https://github.com/lneuhaus/pyrpl (2017).

Pan, J.-W.

Pasiskevicius, V.

Peng, C.-Zhi

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Petersen, P. M.

A. K. Hansen, P. E. Andersen, O. B. Jensen, B. Sumpf, G. Erbert, and P. M. Petersen, “Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals,” Opt. Lett. 40(23), 5526–5529 (2015).
[Crossref]

O. B. Jensen and P. M. Petersen, “Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser,” Appl. Phys. Lett. 103(14), 141107 (2013).
[Crossref]

Pincheira, P. I. R.

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

Pollnau, M.

Polzik, E. S.

F. Khalili and E. S. Polzik, “Overcoming the SQL in gravitational wave detectors using spin systems with negative effective mass,” Phys. Rev. Lett. 121(3), 031101 (2018).
[Crossref]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
[Crossref]

Quiring, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Ricken, R.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Risk, W. P.

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Sabuncu, M.

Sansoni, L.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Schnabel, R.

Schönbeck, A.

She, C.-Y.

Shen, Q.

Shi, B.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Shiokawa, K.

Silberhorn, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Steinlechner, J.

Steinlechner, S.

Suchowski, H.

Sumpf, B.

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

Telle, J. M.

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

Tjörnhammar, S.

Uždavinys, T. K.

Vance, J. D.

Wang, H.

Wang, S.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Xia, J.

Y. F. Lü, X. D. Yin, J. Xia, L. Bao, and X. H. Zhang, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm,” Laser Phys. Lett. 6(12), 860–863 (2009).
[Crossref]

Yan, M.-Chen

Yao, X.-C.

Ye, J.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

Yin, X. D.

Y. F. Lü, X. D. Yin, J. Xia, L. Bao, and X. H. Zhang, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm,” Laser Phys. Lett. 6(12), 860–863 (2009).
[Crossref]

Yoshida, R.

Yuan, T.

Yun, H.

H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
[Crossref]

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

Zeng, Ch.

Zhang, K. S.

K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, and C. Fabre, “Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator,” Phys. Rev. A 64(3), 033815 (2001).
[Crossref]

Zhang, W.-Zhuo

Zhang, X. H.

Y. F. Lü, X. D. Yin, J. Xia, L. Bao, and X. H. Zhang, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm,” Laser Phys. Lett. 6(12), 860–863 (2009).
[Crossref]

Zhou, Z.

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Zukauskas, A.

Appl. Opt. (3)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

O. B. Jensen and P. M. Petersen, “Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser,” Appl. Phys. Lett. 103(14), 141107 (2013).
[Crossref]

Appl. Spectrosc. Rev. (1)

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41(3), 259–303 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

G. T. Moore, “Resonant sum-frequency generation,” IEEE J. Quantum Electron. 38(1), 12–18 (2002).
[Crossref]

J. Appl. Phys. (2)

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Laser Phys. Lett. (1)

Y. F. Lü, X. D. Yin, J. Xia, L. Bao, and X. H. Zhang, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm,” Laser Phys. Lett. 6(12), 860–863 (2009).
[Crossref]

Nat. Biomed. Eng. (1)

H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
[Crossref]

Nat. Commun. (1)

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8(1), 14288 (2017).
[Crossref]

Nature (1)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref]

Opt. Commun. (1)

S. L. Liu, Z. H. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, “Efficient 525 nm laser generation in single or double resonant cavity,” Opt. Commun. 410, 215–221 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (10)

J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28(22), 2219–2221 (2003).
[Crossref]

H. Wang, Y. Kawahito, R. Yoshida, Y. Nakashima, and K. Shiokawa, “Development of a high-power blue laser (445 nm) for material processing,” Opt. Lett. 42(12), 2251–2254 (2017).
[Crossref]

H. M. Kretschmann, F. Heine, G. Huber, and T. Halldórsson, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer,” Opt. Lett. 22(19), 1461–1463 (1997).
[Crossref]

S. Ast, R. Moghadas Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett. 36(17), 3467–3469 (2011).
[Crossref]

H. Cankaya, A.-L. Calendron, H. Suchowski, and F. X. Kärtner, “Highly efficient broadband sum-frequency generation in the visible wavelength range,” Opt. Lett. 39(10), 2912–2915 (2014).
[Crossref]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
[Crossref]

A. K. Hansen, P. E. Andersen, O. B. Jensen, B. Sumpf, G. Erbert, and P. M. Petersen, “Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals,” Opt. Lett. 40(23), 5526–5529 (2015).
[Crossref]

W. P. Risk and W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17(10), 707–709 (1992).
[Crossref]

X.-Y. Cui, Q. Shen, M.-Chen Yan, Ch. Zeng, T. Yuan, W.-Zhuo Zhang, X.-C. Yao, C.-Zhi Peng, X. Jiang, Y.-A. Chen, and J.-W. Pan, “High-power 671-nm laser by second-harmonic generation with 93% efficiency in an external ring cavity,” Opt. Lett. 43(8), 1666–1669 (2018).
[Crossref]

E. C. Cheung, K. Koch, and G. T. Moore, “Frequency upconversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19(23), 1967–1969 (1994).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Phys. Rev. A (1)

K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, and C. Fabre, “Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator,” Phys. Rev. A 64(3), 033815 (2001).
[Crossref]

Phys. Rev. Lett. (1)

F. Khalili and E. S. Polzik, “Overcoming the SQL in gravitational wave detectors using spin systems with negative effective mass,” Phys. Rev. Lett. 121(3), 031101 (2018).
[Crossref]

Sci. Rep. (1)

A. L. Moura, S. J. M. Carreño, P. I. R. Pincheira, Z. V. Fabris, L. J. Q. Maia, A. S. L. Gomes, and C. B. de Araújo, “Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes,” Sci. Rep. 6(1), 27107 (2016).
[Crossref]

Science (1)

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref]

Other (2)

R. W. Boyd, Nonlinear Optics, Elsevier, 2003.

L. Neuhaus, “PyRPL”, https://github.com/lneuhaus/pyrpl (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Total QCE as a function of the incident pump powers. (b) Calculated relative deviation between QCEs obtained by the perturbative and the rigorous theory. Parameters used in the simulations are $R_{1,\mathrm {in}} = R_{2,\mathrm {in}} = 0.92$, $\Delta _1 = \Delta _2= 0.003$, and $\alpha = 0.045~\mathrm {W}^{-1}$.
Fig. 2.
Fig. 2. Block diagram of the experimental setup with the main components. The reflection and the transmission from the cavity is measured with four 150 MHz bandwidth photodetectors. DM: dichroic mirrors, PM: phase modulators, HWP: half-wave plate, L: lenses, PZT: Piezo-electrical element, M: mirrors.
Fig. 3.
Fig. 3. Cavity response while scanning the cavity length over two resonances of the TEM$_{00}$ mode, showing the reflection from the cavity input mirror at 1064.5 nm (a) and 849.2 nm (b), transmission through the cavity at 1064.5 nm (c) and 849.2 nm (d), a typical error signal for PDH locking of the cavity length (e), and the intensity of the SFG field at the output of the cavity (f). The traces are normalized to the maximum intensity. At 0 elongation, both pump fields are resonant. The optical pump powers are set such that the pump beams are nearly impedance-matched under depletion by the SFG process. The resonances occurring at elongations matching the pump wavelengths, i.e. 849.2 nm and 1064.5 nm, correspond to single resonant cases in the overcoupled cavity regime.
Fig. 4.
Fig. 4. QCE and SFG optical power as function of injected pump power at 849.2 nm (a) and 1064.5 nm (b) with the incident pump powers at 1064.5 nm and 849.2 nm fixed to 100 mW and 250 mW, respectively. Symbols denote measured values while solid lines represent simulations with different nonlinear conversion coefficients ($\alpha =$ 0.01, 0.02, 0.03, and 0.04 W$^{-1}$). The dashed line shows the maximum SFG power achievable with nonlinear conversion coefficients up to 0.04 W$^{-1}$. Parameters used in the simulations are $R_{1,\mathrm {in}} = R_{2,\mathrm {in}} = 0.92$, $\Delta _1 = \Delta _2= 0.003$ and 88$\%$ mode-matching.
Fig. 5.
Fig. 5. (a) Power stability measurement over 1 hour. The red dashed trace is a linear fit to the data. The power stability is measured to be 0.8$\%$ over one hour and the fit indicates a slow decrease of output SFG power of about -2.5 µW/s. The short term stability can be estimated after correction of the slope and reads 0.35$\%$. (b) Beam profile of the SFG output after collimation by a spherical lens with 50 mm focal length. The intensity profile is normalized to the peak intensity. The intensity distribution indicates a single TEM$_{00}$ mode as expected by the cavity design. The cross sections of the beam intensity along the x and y axis (black traces) show very good matching with Gaussian fits (red dashed traces).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P 3 , o u t = ( λ 2 / λ 3 ) P 2 , i n s n 2 { [ ( λ 3 / λ 2 ) α P 1 , i n ] 1 / 2   | m } .
P 3 , o u t ( a p p . ) = α P 1 , i n P 2 , i n .
P 1 , o u t = d n 2 { [ ( λ 3 / λ 2 ) α P 1 , i n ] 1 / 2   | m } P 1 , i n ( 1 Γ 1 ) P 1 , i n ,
P 2 , o u t = c n 2 { [ ( λ 3 / λ 2 ) α P 1 , i n ] 1 / 2   | m } P 2 , i n ( 1 Γ 2 ) P 2 , i n ,
P 1 , o u t ( a p p . ) = [ 1 ( λ 3 / λ 1 ) α P 2 , i n ] P 1 , i n ( 1 Γ 1 ( a p p . ) ) P 1 , i n ,
P 2 , o u t ( a p p . ) = [ 1 ( λ 3 / λ 2 ) α P 1 , i n ] P 2 , i n ( 1 Γ 2 ( a p p . ) ) P 2 , i n ,
P 1 , c i r c = 1 R 1 , i n [ 1 R 1 , i n ( 1 Δ 1 ) ( 1 Γ 1 ) ] 2   P 1 , i n c ,
P 2 , c i r c = 1 R 2 , i n [ 1 R 2 , i n ( 1 Δ 2 ) ( 1 Γ 2 ) ] 2   P 2 , i n c ,
η = 2 λ 3 P 3 , o u t λ 1 P 1 , i n c + λ 2 P 2 , i n c = 2 η 1 1 + η 2 1 ,

Metrics