Abstract

We investigate the temporal and spectral properties of narrowband photon pairs from a double-Λ-type atomic system of a warm 87Rb atomic ensemble. The temporal properties of the narrowband photons are investigated by measuring their auto-correlation and cross-correlation functions. The spectral measurement of the photon pair is obtained by applying the stimulated emission method. We show that the biphoton spectral waveform with a spectral width of ∼6 MHz corresponds to the biphoton temporal waveform with a temporal width of ∼26 ns. We believe that our results can contribute to the characterization of narrowband photons generated from atomic ensembles and aid in the development of new photonic quantum states generated from atomic systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston
Opt. Express 19(15) 14632-14641 (2011)

Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system

Yoon-Seok Lee, Sang Min Lee, Heonoh Kim, and Han Seb Moon
Opt. Express 24(24) 28083-28091 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
    [Crossref]
  2. V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
    [Crossref]
  3. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
    [Crossref]
  4. S. Du, J. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25(12), C98–C108 (2008).
    [Crossref]
  5. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
    [Crossref]
  6. Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
    [Crossref]
  7. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82(5), 053842 (2010).
    [Crossref]
  8. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
    [Crossref]
  9. D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and G.-C. Guo, “Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide,” Optica 2(7), 642–645 (2015).
    [Crossref]
  10. A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
    [Crossref]
  11. C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
    [Crossref]
  12. Y.-S. Lee, S. M. Lee, H. Kim, and H. S. Moon, “Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system,” Opt. Express 24(24), 28083–28091 (2016).
    [Crossref]
  13. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref]
  14. Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
    [Crossref]
  15. Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
    [Crossref]
  16. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref]
  17. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
    [Crossref]
  18. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref]
  19. T. Jeong, Y.-S. Lee, J. Park, H. Kim, and H. S. Moon, “Quantum interference between autonomous single-photon sources from Doppler-broadened atomic ensembles,” Optica 4(10), 1167–1170 (2017).
    [Crossref]
  20. J. Park, H. Kim, and H. S. Moon, “Two-photon interferences of nondegenerate photon pairs from Doppler-broadened atomic ensemble,” Opt. Express 25(25), 32064–32073 (2017).
    [Crossref]
  21. J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-energy entangled photon pairs from Doppler-broadened atomic ensemble via collective two-photon coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
    [Crossref]
  22. J. Park, D. Kim, H. Kim, and H. S. Moon, “High-visibility Franson interference of time–energy entangled photon pairs from warm atomic ensemble,” Opt. Lett. 44(15), 3681–3684 (2019).
    [Crossref]
  23. M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
    [Crossref]
  24. B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1(5), 281–284 (2014).
    [Crossref]
  25. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
    [Crossref]
  26. L. A. Rozema, C. Wang, D. H. Mahler, A. Hayat, A. M. Steinberg, J. E. Sipe, and M. Liscidini, “Characterizing an entangled-photon source with classical detectors and measurements,” Optica 2(5), 430–433 (2015).
    [Crossref]
  27. I. Jizan, B. Bell, L. G. Helt, A. C. Bedoya, C. Xiong, and B. J. Eggleton, “Phase-sensitive tomography of the joint spectral amplitude of photon pair sources,” Opt. Lett. 41(20), 4803–4806 (2016).
    [Crossref]
  28. K.-K. Park, J.-H. Kim, T.-M. Zhao, Y.-W. Cho, and Y.-H. Kim, “Measuring the frequency-time two-photon wavefunction of narrowband entangled photons from cold atoms via stimulated emission,” Optica 4(10), 1293–1297 (2017).
    [Crossref]
  29. T. Jeong, J. Park, and H. S. Moon, “Stimulated measurement of spontaneous four-wave mixing from warm atomic ensemble,” Phys. Rev. A 100(3), 033818 (2019).
    [Crossref]
  30. J. Park, T. Jeong, and H. S. Moon, “Temporal intensity correlation of bunched light from a warm atomic vapor with a ladder-type two-photon transition,” Sci. Rep. 8(1), 10981 (2018).
    [Crossref]
  31. T. Jeong and H. S. Moon, “Phase correlation between four-wave mixing light and optical fields in a double (-type atomic system,” Opt. Express 24(25), 28774–28783 (2016).
    [Crossref]

2019 (3)

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

J. Park, D. Kim, H. Kim, and H. S. Moon, “High-visibility Franson interference of time–energy entangled photon pairs from warm atomic ensemble,” Opt. Lett. 44(15), 3681–3684 (2019).
[Crossref]

T. Jeong, J. Park, and H. S. Moon, “Stimulated measurement of spontaneous four-wave mixing from warm atomic ensemble,” Phys. Rev. A 100(3), 033818 (2019).
[Crossref]

2018 (2)

J. Park, T. Jeong, and H. S. Moon, “Temporal intensity correlation of bunched light from a warm atomic vapor with a ladder-type two-photon transition,” Sci. Rep. 8(1), 10981 (2018).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-energy entangled photon pairs from Doppler-broadened atomic ensemble via collective two-photon coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

2017 (3)

2016 (4)

2015 (2)

2014 (3)

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1(5), 281–284 (2014).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

2013 (2)

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref]

2012 (2)

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref]

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]

2010 (1)

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82(5), 053842 (2010).
[Crossref]

2008 (3)

S. Du, J. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25(12), C98–C108 (2008).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref]

2007 (1)

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

2006 (2)

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[Crossref]

2005 (1)

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref]

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Achal, R.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]

Balic, V.

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref]

Becerra, F. E.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82(5), 053842 (2010).
[Crossref]

Bedoya, A. C.

Bell, B.

Belthangady, C.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[Crossref]

Boucher, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Braje, D. A.

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref]

Brannan, T.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Chapman, M. S.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Chen, P.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Chen, S.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Chen, Y.-A.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Chng, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref]

Cho, Y.-W.

K.-K. Park, J.-H. Kim, T.-M. Zhao, Y.-W. Cho, and Y.-H. Kim, “Measuring the frequency-time two-photon wavefunction of narrowband entangled photons from cold atoms via stimulated emission,” Optica 4(10), 1293–1297 (2017).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

Chow, T. K. A.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

Cohen, O.

Ding, D.-S.

Du, S.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

S. Du, J. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25(12), C98–C108 (2008).
[Crossref]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[Crossref]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

Ducci, S.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Eckstein, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Eggleton, B. J.

Fang, B.

Favero, I.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Filloux, P.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Gulati, G. K.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref]

Guo, G.-C.

Harris, S. E.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[Crossref]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref]

Hayat, A.

Helt, L. G.

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Jeong, T.

T. Jeong, J. Park, and H. S. Moon, “Stimulated measurement of spontaneous four-wave mixing from warm atomic ensemble,” Phys. Rev. A 100(3), 033818 (2019).
[Crossref]

J. Park, T. Jeong, and H. S. Moon, “Temporal intensity correlation of bunched light from a warm atomic vapor with a ladder-type two-photon transition,” Sci. Rep. 8(1), 10981 (2018).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-energy entangled photon pairs from Doppler-broadened atomic ensemble via collective two-photon coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

T. Jeong, Y.-S. Lee, J. Park, H. Kim, and H. S. Moon, “Quantum interference between autonomous single-photon sources from Doppler-broadened atomic ensembles,” Optica 4(10), 1167–1170 (2017).
[Crossref]

T. Jeong and H. S. Moon, “Phase correlation between four-wave mixing light and optical fields in a double (-type atomic system,” Opt. Express 24(25), 28774–28783 (2016).
[Crossref]

Jizan, I.

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Kim, D.

Kim, H.

Kim, J.-H.

Kim, Y.-H.

K.-K. Park, J.-H. Kim, T.-M. Zhao, Y.-W. Cho, and Y.-H. Kim, “Measuring the frequency-time two-photon wavefunction of narrowband entangled photons from cold atoms via stimulated emission,” Optica 4(10), 1293–1297 (2017).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

Koch, M.

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Kolchin, P.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[Crossref]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref]

Kurtsiefer, C.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Lee, J.-C.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

Lee, S. M.

Lee, Y.-S.

Lemaître, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Leo, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Li, J.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Li, Y.

Liao, K.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Liscidini, M.

L. A. Rozema, C. Wang, D. H. Mahler, A. Hayat, A. M. Steinberg, J. E. Sipe, and M. Liscidini, “Characterizing an entangled-photon source with classical detectors and measurements,” Optica 2(5), 430–433 (2015).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1(5), 281–284 (2014).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref]

Lorenz, V. O.

Loy, M. M. T.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

Lvovsky, A. I.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]

MacRae, A.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]

Mahler, D. H.

Maslennikov, G.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref]

Matsukevich, D.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Moon, H. S.

J. Park, D. Kim, H. Kim, and H. S. Moon, “High-visibility Franson interference of time–energy entangled photon pairs from warm atomic ensemble,” Opt. Lett. 44(15), 3681–3684 (2019).
[Crossref]

T. Jeong, J. Park, and H. S. Moon, “Stimulated measurement of spontaneous four-wave mixing from warm atomic ensemble,” Phys. Rev. A 100(3), 033818 (2019).
[Crossref]

J. Park, T. Jeong, and H. S. Moon, “Temporal intensity correlation of bunched light from a warm atomic vapor with a ladder-type two-photon transition,” Sci. Rep. 8(1), 10981 (2018).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-energy entangled photon pairs from Doppler-broadened atomic ensemble via collective two-photon coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

J. Park, H. Kim, and H. S. Moon, “Two-photon interferences of nondegenerate photon pairs from Doppler-broadened atomic ensemble,” Opt. Express 25(25), 32064–32073 (2017).
[Crossref]

T. Jeong, Y.-S. Lee, J. Park, H. Kim, and H. S. Moon, “Quantum interference between autonomous single-photon sources from Doppler-broadened atomic ensembles,” Optica 4(10), 1167–1170 (2017).
[Crossref]

Y.-S. Lee, S. M. Lee, H. Kim, and H. S. Moon, “Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system,” Opt. Express 24(24), 28083–28091 (2016).
[Crossref]

T. Jeong and H. S. Moon, “Phase correlation between four-wave mixing light and optical fields in a double (-type atomic system,” Opt. Express 24(25), 28774–28783 (2016).
[Crossref]

Orozco, L. A.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82(5), 053842 (2010).
[Crossref]

Pan, J.-W.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Park, J.

J. Park, D. Kim, H. Kim, and H. S. Moon, “High-visibility Franson interference of time–energy entangled photon pairs from warm atomic ensemble,” Opt. Lett. 44(15), 3681–3684 (2019).
[Crossref]

T. Jeong, J. Park, and H. S. Moon, “Stimulated measurement of spontaneous four-wave mixing from warm atomic ensemble,” Phys. Rev. A 100(3), 033818 (2019).
[Crossref]

J. Park, T. Jeong, and H. S. Moon, “Temporal intensity correlation of bunched light from a warm atomic vapor with a ladder-type two-photon transition,” Sci. Rep. 8(1), 10981 (2018).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-energy entangled photon pairs from Doppler-broadened atomic ensemble via collective two-photon coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

J. Park, H. Kim, and H. S. Moon, “Two-photon interferences of nondegenerate photon pairs from Doppler-broadened atomic ensemble,” Opt. Express 25(25), 32064–32073 (2017).
[Crossref]

T. Jeong, Y.-S. Lee, J. Park, H. Kim, and H. S. Moon, “Quantum interference between autonomous single-photon sources from Doppler-broadened atomic ensembles,” Optica 4(10), 1167–1170 (2017).
[Crossref]

Park, K.-K.

K.-K. Park, J.-H. Kim, T.-M. Zhao, Y.-W. Cho, and Y.-H. Kim, “Measuring the frequency-time two-photon wavefunction of narrowband entangled photons from cold atoms via stimulated emission,” Optica 4(10), 1293–1297 (2017).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

Rolston, S. L.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82(5), 053842 (2010).
[Crossref]

Rozema, L. A.

Rubin, M. H.

Schmiedmayer, J.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Shi, B.-S.

Shi, S.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Shu, C.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Sipe, J. E.

L. A. Rozema, C. Wang, D. H. Mahler, A. Hayat, A. M. Steinberg, J. E. Sipe, and M. Liscidini, “Characterizing an entangled-photon source with classical detectors and measurements,” Optica 2(5), 430–433 (2015).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1(5), 281–284 (2014).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref]

Srivathsan, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref]

Steinberg, A. M.

Strassel, T.

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Su, K.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Wang, C.

Wang, Y.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Wen, J.

Willis, R. T.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82(5), 053842 (2010).
[Crossref]

Xiao, Y.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Xiong, C.

Yan, H.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Yin, G. Y.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[Crossref]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref]

Yuan, Z.-S.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Zhang, S.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Zhang, W.

Zhao, B.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Zhao, T.-M.

Zhao, Y.

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Zhou, Y.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Zhou, Z.-Y.

Zhu, G.-J.

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

Zhu, L.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Zhu, S.-L.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

Zou, X.-B.

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Nat. Commun. (1)

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Nat. Photonics (1)

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Nature (3)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (5)

Phys. Rev. A (2)

T. Jeong, J. Park, and H. S. Moon, “Stimulated measurement of spontaneous four-wave mixing from warm atomic ensemble,” Phys. Rev. A 100(3), 033818 (2019).
[Crossref]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82(5), 053842 (2010).
[Crossref]

Phys. Rev. Lett. (10)

Z.-S. Yuan, Y.-A. Chen, S. Chen, B. Zhao, M. Koch, T. Strassel, Y. Zhao, G.-J. Zhu, J. Schmiedmayer, and J.-W. Pan, “Synchronized Independent Narrow-Band Single Photons and Efficient Generation of Photonic Entanglement,” Phys. Rev. Lett. 98(18), 180503 (2007).
[Crossref]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[Crossref]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-energy entangled photon pairs from Doppler-broadened atomic ensemble via collective two-photon coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref]

Sci. Rep. (1)

J. Park, T. Jeong, and H. S. Moon, “Temporal intensity correlation of bunched light from a warm atomic vapor with a ladder-type two-photon transition,” Sci. Rep. 8(1), 10981 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental configuration for narrowband photon generation from Rb atomic vapor. (a) Generation of Stokes and anti-Stokes photons via spontaneous four-wave mixing in Doppler-broadened double-Λ atomic system interacting with pump (Ωp) and coupling (ΩC) fields in the D1 and D2 transitions of 87Rb atoms. (b) Experimental schematic for narrowband photon generation in 87Rb atomic vapor cell with 780- and 795-nm external-cavity diode lasers for Ωp and ΩC fields, respectively (HOP: hollow optical pumping; P: polarizer; H: half-wave plate; PBS: polarizing beam splitter; PD: photodiode; L: lens; Fs and Fas: filtering modules for Stokes and anti-Stokes photons, respectively, including the interference filter and solid fused-silica etalon filter; SMF: single-mode fiber; FBS: fiber beam splitter; SPDMs: single-photon detector modules; TCSPC: time-correlated single-photon counting module).
Fig. 2.
Fig. 2. Measurement of temporal statistical properties of generated Stokes (ωs) and anti-Stokes (ωas) photons. Normalized auto-correlation function for individual (a) ωs and (b) ωas photons measured in the Hanbury Brown–Twiss experiment. (c) Two-photon coincidence counts between the ωs and ωas photons over a 300-s accumulation time with 0.5-ns time-bin width.
Fig. 3.
Fig. 3. Characteristics of atomic medium in presence of double-Λ-type two-photon coherence. (a) Transmittance and (b) four-wave mixing (FWM) spectra as functions of the optical frequency of the ΩS (seed) field with the anti-Stokes mode in the two cases of ΩS powers of 2 µW (red curve) and 20 µW (blue curve); the gray curve denotes the saturated absorption spectrum (SAS) of the ΩS field in the 5S1/2(F = 2)–5P1/2 (F′ = 1 and 2) transition of 87Rb atoms.
Fig. 4.
Fig. 4. Biphoton temporal and spectral waveforms of narrowband photon source. (a) Biphoton temporal waveform (BTW) and (b) biphoton spectral waveform (BSW) of narrowband photons from Doppler-broadened double-Λ-type atomic ensemble.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G s a ( 2 ) ( τ ) = | Ψ ( τ ) | 2 = | 0 | a ^ a ( t a ) a ^ s ( t s ) | Ψ | 2 ,
Ψ | D a [ α ( ω a ) ] a ^ s ( ω s ) a ^ a ( ω a ) a ^ s ( ω s ) a ^ a ( ω a ) D a [ α ( ω a ) ] | Ψ | α ( ω a ) | 2 | ψ ( ω s , ω a ) | 2 ,
| Ψ ( τ ) d ω a χ ( 3 ) ( ω s , ω a ) sinc ( Δ k L 2 ) a ^ s a ^ a | 0 ,
G s a ( 2 ) ( τ ) = | Ψ ( τ ) | 2 = | i L ω ¯ s ω ¯ a E P E C 4 π c d ω a χ ( 3 ) ( ω s , ω a ) e i ω a τ | 2 ,

Metrics