Abstract

Here, we study the Er3+ NIR 4I9/2-4I15/2 photoluminescence peaking at 800 nm. It can be detected with a good signal-to-noise for the prepared CaWO4:Yb3+,Er3+ phosphors upon excitation at 980 nm. When directly exciting the Er3+ green and red emitting states over the 333-773 K temperature range, the 800 nm photoluminescence for the samples is undetectable. It shows that the non-radiative relaxation from the upper excited states to the 4I9/2 emitting state is extremely inefficient. Moreover, the 800 nm photoluminescence decay curve is measured at high temperatures. It is found that the 800 nm emission always has a similar lifetime with the Er3+ 4I11/2-4I15/2 transition. This reminds us that the Er3+ 4I9/2 state is mainly populated by the adjacent lower 4I11/2 state by a thermally coupled way.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Power switched multiphoton upconversion emissions of Er3+ in Yb3+/Er3+ codoped β-NaYF4 microcrystals induced by 980 nm excitation

Kezhi Zheng, Lili Wang, Daisheng Zhang, Dan Zhao, and Weiping Qin
Opt. Express 18(3) 2934-2939 (2010)

Photoluminescence enhancement in Yb3+:Er3+ co-doped eutectic Al2O3: SiO2 thin films by 980nm excitation

Qi Song, Jingsong Gao, Xiaoyi Wang, Hong Chen, Tongtong Wang, Xuanming Zheng, Cheng-Ren Li, and Chang-Lie Song
Opt. Express 15(7) 3948-3954 (2007)

Strategy for highly sensitive optical ratiometric temperature measurement

Leipeng Li, Feng Qin, Yangdong Zheng, and Zhiguo Zhang
Opt. Mater. Express 9(8) 3260-3267 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref]
  2. Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
    [Crossref]
  3. F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref]
  4. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
    [Crossref]
  5. M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
    [Crossref]
  6. X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
    [Crossref]
  7. G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
    [Crossref]
  8. L. Li, F. Qin, L. Li, H. Gao, and Z. Zhang, “Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y2O3:Yb3+,Er3+ nano-thermometers,” J. Mater. Chem. C 7(24), 7378–7385 (2019).
    [Crossref]
  9. L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
    [Crossref]
  10. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  11. L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
    [Crossref]
  12. S. Zhou, C. Duan, M. Yin, X. Liu, S. Han, S. Zhang, and X. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26(21), 27339–27345 (2018).
    [Crossref]
  13. C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
    [Crossref]
  14. H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
    [Crossref]
  15. L. Li, F. Qin, Y. Zheng, and Z. Zhang, “Strategy for highly sensitive optical ratiometric temperature measurement,” Opt. Mater. Express 9(8), 3260–3267 (2019).
    [Crossref]
  16. H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
    [Crossref]
  17. N. Rakov and G. S. Maciel, “Exploring the 4I13/2→4I15/2 radiative transition from Er3+ in Y2O3 for temperature sensing,” J. Lumin. 199, 293–297 (2018).
    [Crossref]
  18. R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
    [Crossref]
  19. P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
    [Crossref]
  20. P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
    [Crossref]
  21. L. Li, F. Qin, Y. Zhou, J. Miao, and Z. Zhang, “Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence,” Spectrochim. Acta A (to be published).
  22. D. Christofilos, S. Ves, and G. A. Kourouklis, “Pressure induced phase transitions in alkaline earth tungstates,” Phys. Status Solidi B 198(1), 539–544 (1996).
    [Crossref]

2019 (2)

L. Li, F. Qin, L. Li, H. Gao, and Z. Zhang, “Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y2O3:Yb3+,Er3+ nano-thermometers,” J. Mater. Chem. C 7(24), 7378–7385 (2019).
[Crossref]

L. Li, F. Qin, Y. Zheng, and Z. Zhang, “Strategy for highly sensitive optical ratiometric temperature measurement,” Opt. Mater. Express 9(8), 3260–3267 (2019).
[Crossref]

2018 (5)

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

N. Rakov and G. S. Maciel, “Exploring the 4I13/2→4I15/2 radiative transition from Er3+ in Y2O3 for temperature sensing,” J. Lumin. 199, 293–297 (2018).
[Crossref]

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

S. Zhou, C. Duan, M. Yin, X. Liu, S. Han, S. Zhang, and X. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26(21), 27339–27345 (2018).
[Crossref]

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

2016 (6)

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

2015 (2)

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
[Crossref]

2014 (1)

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref]

2012 (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

2010 (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

1996 (1)

D. Christofilos, S. Ves, and G. A. Kourouklis, “Pressure induced phase transitions in alkaline earth tungstates,” Phys. Status Solidi B 198(1), 539–544 (1996).
[Crossref]

Aguiló, M.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

Arbabzadah, E. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Bednarkiewicz, A.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Brekhovskikh, M. N.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

Brites, C. D. S.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Bu, Y.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Carlos, L. D.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Chen, B.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Chen, R.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Christofilos, D.

D. Christofilos, S. Ves, and G. A. Kourouklis, “Pressure induced phase transitions in alkaline earth tungstates,” Phys. Status Solidi B 198(1), 539–544 (1996).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Damzen, M. J.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Debasu, M. L.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Deng, D.

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Dramicanin, M. D.

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref]

Duan, C.

Dunina, E. B.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Gao, H.

L. Li, F. Qin, L. Li, H. Gao, and Z. Zhang, “Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y2O3:Yb3+,Er3+ nano-thermometers,” J. Mater. Chem. C 7(24), 7378–7385 (2019).
[Crossref]

Guo, C.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

Han, S.

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Hao, Z.

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Hreniak, D.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Hua, R.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

Huang, F.

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

Huang, W.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Khaidukov, N. M.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

Kornienko, A. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Kourouklis, G. A.

D. Christofilos, S. Ves, and G. A. Kourouklis, “Pressure induced phase transitions in alkaline earth tungstates,” Phys. Status Solidi B 198(1), 539–544 (1996).
[Crossref]

Lei, R.

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

Li, L.

L. Li, F. Qin, Y. Zheng, and Z. Zhang, “Strategy for highly sensitive optical ratiometric temperature measurement,” Opt. Mater. Express 9(8), 3260–3267 (2019).
[Crossref]

L. Li, F. Qin, L. Li, H. Gao, and Z. Zhang, “Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y2O3:Yb3+,Er3+ nano-thermometers,” J. Mater. Chem. C 7(24), 7378–7385 (2019).
[Crossref]

L. Li, F. Qin, L. Li, H. Gao, and Z. Zhang, “Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y2O3:Yb3+,Er3+ nano-thermometers,” J. Mater. Chem. C 7(24), 7378–7385 (2019).
[Crossref]

L. Li, F. Qin, Y. Zhou, J. Miao, and Z. Zhang, “Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence,” Spectrochim. Acta A (to be published).

Li, T.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

Li, X.

S. Zhou, C. Duan, M. Yin, X. Liu, S. Han, S. Zhang, and X. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26(21), 27339–27345 (2018).
[Crossref]

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Liu, C.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Liu, Q.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Liu, T.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Liu, X.

S. Zhou, C. Duan, M. Yin, X. Liu, S. Han, S. Zhang, and X. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26(21), 27339–27345 (2018).
[Crossref]

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Liu, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Loiko, P. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Luo, Y.

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

Maciel, G. S.

N. Rakov and G. S. Maciel, “Exploring the 4I13/2→4I15/2 radiative transition from Er3+ in Y2O3 for temperature sensing,” J. Lumin. 199, 293–297 (2018).
[Crossref]

G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
[Crossref]

Marciniak, L.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Mateos, X.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

Miao, J.

L. Li, F. Qin, Y. Zhou, J. Miao, and Z. Zhang, “Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence,” Spectrochim. Acta A (to be published).

Pan, G.

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

Qin, F.

L. Li, F. Qin, Y. Zheng, and Z. Zhang, “Strategy for highly sensitive optical ratiometric temperature measurement,” Opt. Mater. Express 9(8), 3260–3267 (2019).
[Crossref]

L. Li, F. Qin, L. Li, H. Gao, and Z. Zhang, “Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y2O3:Yb3+,Er3+ nano-thermometers,” J. Mater. Chem. C 7(24), 7378–7385 (2019).
[Crossref]

L. Li, F. Qin, Y. Zhou, J. Miao, and Z. Zhang, “Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence,” Spectrochim. Acta A (to be published).

Qin, X.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Rakov, N.

N. Rakov and G. S. Maciel, “Exploring the 4I13/2→4I15/2 radiative transition from Er3+ in Y2O3 for temperature sensing,” J. Lumin. 199, 293–297 (2018).
[Crossref]

G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
[Crossref]

Rocha, J.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Skoptsov, N. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Strek, W.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Sun, J.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

Sun, L.-D.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref]

Suo, H.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

Ves, S.

D. Christofilos, S. Ves, and G. A. Kourouklis, “Pressure induced phase transitions in alkaline earth tungstates,” Phys. Status Solidi B 198(1), 539–544 (1996).
[Crossref]

Vilejshikova, E. V.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Wang, X.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Wang, Y.-F.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref]

Waszniewska, K.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Wu, H.

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

Xia, H.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

Xiao, Y.

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

Xie, X.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Xu, H.

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Xu, S.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

Yan, C.-H.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref]

Yan, X.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Yasukevich, A. S.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Yin, M.

Yumashev, K. V.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Zhang, J.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

Zhang, L.

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

Zhang, S.

Zhang, X.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

Zhang, Z.

L. Li, F. Qin, L. Li, H. Gao, and Z. Zhang, “Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y2O3:Yb3+,Er3+ nano-thermometers,” J. Mater. Chem. C 7(24), 7378–7385 (2019).
[Crossref]

L. Li, F. Qin, Y. Zheng, and Z. Zhang, “Strategy for highly sensitive optical ratiometric temperature measurement,” Opt. Mater. Express 9(8), 3260–3267 (2019).
[Crossref]

L. Li, F. Qin, Y. Zhou, J. Miao, and Z. Zhang, “Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence,” Spectrochim. Acta A (to be published).

Zhao, H.

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

Zhao, S.

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

Zheng, Y.

Zhou, S.

Zhou, Y.

L. Li, F. Qin, Y. Zhou, J. Miao, and Z. Zhang, “Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence,” Spectrochim. Acta A (to be published).

Acc. Chem. Res. (1)

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref]

Adv. Mater. (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Lumin. (3)

N. Rakov and G. S. Maciel, “Exploring the 4I13/2→4I15/2 radiative transition from Er3+ in Y2O3 for temperature sensing,” J. Lumin. 199, 293–297 (2018).
[Crossref]

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, and K. V. Yumashev, “Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals,” J. Lumin. 180, 103–110 (2016).
[Crossref]

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

J. Mater. Chem. C (1)

L. Li, F. Qin, L. Li, H. Gao, and Z. Zhang, “Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y2O3:Yb3+,Er3+ nano-thermometers,” J. Mater. Chem. C 7(24), 7378–7385 (2019).
[Crossref]

J. Phys. Chem. C (3)

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, “Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ System,” J. Phys. Chem. C 122(17), 9611–9618 (2018).
[Crossref]

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

Methods Appl. Fluoresc. (1)

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref]

Nat. Nanotechnol. (1)

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

R. Lei, X. Liu, F. Huang, D. Deng, S. Zhao, H. Xu, and S. Xu, “Optical thermometry based on anomalous temperature-dependent 1.53 µm infrared luminescence of Er3+ in BaMoO4:Er3+/Yb3+ phosphor,” Opt. Mater. 86, 278–285 (2018).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, and R. Hua, “A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation,” Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018).
[Crossref]

Phys. Status Solidi B (1)

D. Christofilos, S. Ves, and G. A. Kourouklis, “Pressure induced phase transitions in alkaline earth tungstates,” Phys. Status Solidi B 198(1), 539–544 (1996).
[Crossref]

RSC Adv. (2)

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
[Crossref]

Other (1)

L. Li, F. Qin, Y. Zhou, J. Miao, and Z. Zhang, “Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence,” Spectrochim. Acta A (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a),(b)XRD patterns, (c)Crystal structure and (d)SEM image of the CaWO4:Yb3+,Er3+ sample; (e)Raman spectrum of the pure CaWO4 sample.
Fig. 2.
Fig. 2. (a)Energy level diagrams of Er3+-Yb3+ system; (b)Emission spectrum of the samples at 773 K upon excitation at 980 nm; note that the interference light from the laser had been subtracted; the inset shows the integrated intensity of this spectrum as a function of temperature from 333 to 773 K.
Fig. 3.
Fig. 3. (a)Excitation spectrum of the samples at 773 K by monitoring at 800 nm; Emission spectra of the samples and the energy level diagrams of Er3+-Yb3+ system upon excitations at (b)520 nm and (c)650 nm in the temperature range from 333 to 773 K.
Fig. 4.
Fig. 4. Luminescence decay curves for the 800 and 1000 nm emissions at (a)693 K, (b)733 K, and (c)773 K, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = A 1 exp ( t t 1 ) + A 2 exp ( t t 2 ) + B ,
t eff = t I ( t ) d t I ( t ) d t ,

Metrics