Abstract

We demonstrate that ion-beam lithography can be applied to the fabrication of rotationally parabolic refractive diamond X-ray micro-lenses that are of interest to the field of high-resolution X-ray focusing and microscopy. Three single half-lenses with curvature radii of 4.8 µm were produced and stacked to form a compound refractive lens, which provided diffraction-limited focusing of X-ray radiation at the P14 beamline of PETRA-III (DESY). As shown with SEM, the lenses are free of expressed low- and high-frequency shape modulations with a figure error of < 200 nm and surface roughness of 30 nm. Precise micro-manipulation and stacking of individual lenses are demonstrated, which opens up new opportunities for compact X-ray microscopy with nanometer resolution.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microfocusing transfocator for 1D and 2D compound refractive lenses

A. V. Zozulya, S. Bondarenko, A. Schavkan, F. Westermeier, G. Grübel, and M. Sprung
Opt. Express 20(17) 18967-18976 (2012)

Ion beam lithography for Fresnel zone plates in X-ray microscopy

Kahraman Keskinbora, Corinne Grévent, Michael Bechtel, Markus Weigand, Eberhard Goering, Achim Nadzeyka, Lloyd Peto, Stefan Rehbein, Gerd Schneider, Rolf Follath, Joan Vila-Comamala, Hanfei Yan, and Gisela Schütz
Opt. Express 21(10) 11747-11756 (2013)

Nanofocusing optics for synchrotron radiation made from polycrystalline diamond

O. J. L. Fox, L. Alianelli, A. M. Malik, I. Pape, P. W. May, and K. J. S. Sawhney
Opt. Express 22(7) 7657-7668 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Tavares, S. C. Leemann, M. Sjöström, and Å Andersson, “The MAX IV storage ring project,” J. Synchrotron Radiat. 21(5), 862–877 (2014).
    [Crossref]
  2. R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini., ESRF Upgrade Programme Phase II (2015–2022) Technical Design Study, The Orange Book, ESRF (2015).
  3. C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
    [Crossref]
  4. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
    [Crossref]
  5. C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
    [Crossref]
  6. J. T. Cremel, Neutron and X-Ray Optics (Newnes, 2013).
  7. T. Roth, L. Alianelli, D. Lengeler, A. Snigirev, and F. Seiboth, “Materials for x-ray refractive lenses minimizing wavefront distortions,” MRS Bull. 42(06), 430–436 (2017).
    [Crossref]
  8. A. Q. R. Baron, Y. Kohmura, V. V. Krishnamurthy, Y. V. Shvyd’ko, and T. Ishikawa, “Beryllium and aluminium refractive collimators for synchrotron radiation,” J. Synchrotron Radiat. 6(5), 953–956 (1999).
    [Crossref]
  9. A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
    [Crossref]
  10. D. Zverev, A. Barannikov, I. Snigireva, and A. Snigirev, “X-ray refractive parabolic axicon lens,” Opt. Express 25(23), 28469–28477 (2017).
    [Crossref]
  11. M. Polikarpov, I. Snigireva, and A. Snigirev, “X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses,” J. Synchrotron Radiat. 21(3), 484–487 (2014).
    [Crossref]
  12. M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
    [Crossref]
  13. A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
    [Crossref]
  14. A. Bosak, I. Snigireva, K. S. Napolskii, and A. Snigirev, “High-Resolution Transmission X-ray Microscopy: A New Tool for Mesoscopic Materials,” Adv. Mater. 22(30), 3256–3259 (2010).
    [Crossref]
  15. P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
    [Crossref]
  16. D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
    [Crossref]
  17. H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
    [Crossref]
  18. K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
    [Crossref]
  19. I. Snigireva, G. B. M. Vaughan, and A. Snigirev, “High-Energy Nanoscale-Resolution X-ray Microscopy Based on Refractive Optics on a Long Beamline,” AIP Conf. Proc. 1365(1), 188–191 (2011).
    [Crossref]
  20. V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
    [Crossref]
  21. A. K. Petrov, V. O. Bessonov, K. A. Abrashitova, N. G. Kokareva, K. R. Safronov, A. A. Barannikov, P. A. Ershov, N. B. Klimova, I. I. Lyatun, V. A. Yunkin, M. Polikarpov, I. Snigireva, A. A. Fedyanin, and A. Snigirev, “Polymer X-ray refractive nano-lenses fabricated by additive technology,” Opt. Express 25(13), 14173 (2017).
    [Crossref]
  22. A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
    [Crossref]
  23. S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
    [Crossref]
  24. S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
    [Crossref]
  25. M. Polikarpov, V. Polikarpov, I. Snigireva, and A. Snigirev, “Diamond X-ray Refractive Lenses with High Acceptance,” Phys. Procedia 84(7), 213–220 (2016).
    [Crossref]
  26. M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
    [Crossref]
  27. S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
    [Crossref]
  28. Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
    [Crossref]
  29. S. Gorelick and A. D. Marco, “Fabrication of glass microlenses using focused Xe beam,” Opt. Express 26(10), 13647–13655 (2018).
    [Crossref]
  30. Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
    [Crossref]
  31. A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
    [Crossref]
  32. T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29(1), 010601 (2011).
    [Crossref]
  33. K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid Prototyping of Fresnel Zone Plates via Direct Ga+ Ion Beam Lithography for High-Resolution X-ray Imaging,” ACS Nano 7(11), 9788–9797 (2013).
    [Crossref]
  34. K. Keskinbora, C. Grévent, M. Hirscher, M. Weigand, and G. Schütz, “Single-Step 3D Nanofabrication of Kinoform Optics via Gray-Scale Focused Ion Beam Lithography for Efficient X-Ray Focusing,” Adv. Opt. Mater. 3(6), 792–800 (2015).
    [Crossref]
  35. M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).
  36. M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
    [Crossref]
  37. F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
    [Crossref]
  38. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
    [Crossref]
  39. J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics (John Wiley & Sons, 2011).
  40. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
    [Crossref]
  41. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
    [Crossref]
  42. D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, “Focused ion beam milling of diamond: effects of H 2 O on yield, surface morphology and microstructure,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 21(6), 2334–2343 (2003).
    [Crossref]
  43. L. A. Giannuzzi, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer Science & Business Media, 2004).
  44. S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
    [Crossref]
  45. R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
    [Crossref]
  46. B. Yu, L. Weber, A. Pacureanu, M. Langer, C. Olivier, P. Cloetens, and F. Peyrin, “Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue,” Opt. Express 26(9), 11110 (2018).
    [Crossref]

2019 (2)

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

2018 (3)

S. Gorelick and A. D. Marco, “Fabrication of glass microlenses using focused Xe beam,” Opt. Express 26(10), 13647–13655 (2018).
[Crossref]

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

B. Yu, L. Weber, A. Pacureanu, M. Langer, C. Olivier, P. Cloetens, and F. Peyrin, “Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue,” Opt. Express 26(9), 11110 (2018).
[Crossref]

2017 (4)

T. Roth, L. Alianelli, D. Lengeler, A. Snigirev, and F. Seiboth, “Materials for x-ray refractive lenses minimizing wavefront distortions,” MRS Bull. 42(06), 430–436 (2017).
[Crossref]

D. Zverev, A. Barannikov, I. Snigireva, and A. Snigirev, “X-ray refractive parabolic axicon lens,” Opt. Express 25(23), 28469–28477 (2017).
[Crossref]

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

A. K. Petrov, V. O. Bessonov, K. A. Abrashitova, N. G. Kokareva, K. R. Safronov, A. A. Barannikov, P. A. Ershov, N. B. Klimova, I. I. Lyatun, V. A. Yunkin, M. Polikarpov, I. Snigireva, A. A. Fedyanin, and A. Snigirev, “Polymer X-ray refractive nano-lenses fabricated by additive technology,” Opt. Express 25(13), 14173 (2017).
[Crossref]

2016 (4)

S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
[Crossref]

M. Polikarpov, V. Polikarpov, I. Snigireva, and A. Snigirev, “Diamond X-ray Refractive Lenses with High Acceptance,” Phys. Procedia 84(7), 213–220 (2016).
[Crossref]

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

2015 (3)

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

K. Keskinbora, C. Grévent, M. Hirscher, M. Weigand, and G. Schütz, “Single-Step 3D Nanofabrication of Kinoform Optics via Gray-Scale Focused Ion Beam Lithography for Efficient X-Ray Focusing,” Adv. Opt. Mater. 3(6), 792–800 (2015).
[Crossref]

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

2014 (4)

M. Polikarpov, I. Snigireva, and A. Snigirev, “X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses,” J. Synchrotron Radiat. 21(3), 484–487 (2014).
[Crossref]

P. F. Tavares, S. C. Leemann, M. Sjöström, and Å Andersson, “The MAX IV storage ring project,” J. Synchrotron Radiat. 21(5), 862–877 (2014).
[Crossref]

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

2013 (3)

K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid Prototyping of Fresnel Zone Plates via Direct Ga+ Ion Beam Lithography for High-Resolution X-ray Imaging,” ACS Nano 7(11), 9788–9797 (2013).
[Crossref]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
[Crossref]

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

2011 (2)

I. Snigireva, G. B. M. Vaughan, and A. Snigirev, “High-Energy Nanoscale-Resolution X-ray Microscopy Based on Refractive Optics on a Long Beamline,” AIP Conf. Proc. 1365(1), 188–191 (2011).
[Crossref]

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29(1), 010601 (2011).
[Crossref]

2010 (1)

A. Bosak, I. Snigireva, K. S. Napolskii, and A. Snigirev, “High-Resolution Transmission X-ray Microscopy: A New Tool for Mesoscopic Materials,” Adv. Mater. 22(30), 3256–3259 (2010).
[Crossref]

2008 (2)

M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

2007 (2)

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

2006 (1)

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

2005 (3)

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

2003 (2)

D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, “Focused ion beam milling of diamond: effects of H 2 O on yield, surface morphology and microstructure,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 21(6), 2334–2343 (2003).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

2002 (1)

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

2000 (1)

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

1999 (2)

A. Q. R. Baron, Y. Kohmura, V. V. Krishnamurthy, Y. V. Shvyd’ko, and T. Ishikawa, “Beryllium and aluminium refractive collimators for synchrotron radiation,” J. Synchrotron Radiat. 6(5), 953–956 (1999).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

1996 (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

1995 (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

’t Hart, D. C.

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

Abrashitova, K.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

Abrashitova, K. A.

Adams, D. P.

D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, “Focused ion beam milling of diamond: effects of H 2 O on yield, surface morphology and microstructure,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 21(6), 2334–2343 (2003).
[Crossref]

Agapov, I.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Alianelli, L.

T. Roth, L. Alianelli, D. Lengeler, A. Snigirev, and F. Seiboth, “Materials for x-ray refractive lenses minimizing wavefront distortions,” MRS Bull. 42(06), 430–436 (2017).
[Crossref]

Als-Nielsen, J.

J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics (John Wiley & Sons, 2011).

Andersson, Å

P. F. Tavares, S. C. Leemann, M. Sjöström, and Å Andersson, “The MAX IV storage ring project,” J. Synchrotron Radiat. 21(5), 862–877 (2014).
[Crossref]

Antipov, S.

S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
[Crossref]

Antipova, O.

S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
[Crossref]

Ashkinazi, E. E.

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

Asthalter, T.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

Babinec, T. M.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29(1), 010601 (2011).
[Crossref]

Barannikov, A.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

D. Zverev, A. Barannikov, I. Snigireva, and A. Snigirev, “X-ray refractive parabolic axicon lens,” Opt. Express 25(23), 28469–28477 (2017).
[Crossref]

Barannikov, A. A.

Barla, A.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

Baron, A. Q. R.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

A. Q. R. Baron, Y. Kohmura, V. V. Krishnamurthy, Y. V. Shvyd’ko, and T. Ishikawa, “Beryllium and aluminium refractive collimators for synchrotron radiation,” J. Synchrotron Radiat. 6(5), 953–956 (1999).
[Crossref]

Barthelmess, M.

M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).

Baruchel, J.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Baryshev, S. V.

S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
[Crossref]

Benner, B.

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

Bessonov, V.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

Bessonov, V. O.

Blank, V.

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

Blank, V. D.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Bosak, A.

A. Bosak, I. Snigireva, K. S. Napolskii, and A. Snigirev, “High-Resolution Transmission X-ray Microscopy: A New Tool for Mesoscopic Materials,” Adv. Mater. 22(30), 3256–3259 (2010).
[Crossref]

Boulogne, F.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Bourenkov, G.

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

Brefeld, W.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Brinkmann, R.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Brockhauser, S.

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

Buffière, J.-Y.

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

Butler, J. E.

S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
[Crossref]

Byelov, D. V.

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

Casari, D.

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

Chae, Y.-C.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Chang, Y.

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

Chao, H.-C.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Choquette, K. D.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

Choy, J. T.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29(1), 010601 (2011).
[Crossref]

Chumakov, A. I.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

Cipriani, F.

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

Cloetens, P.

B. Yu, L. Weber, A. Pacureanu, M. Langer, C. Olivier, P. Cloetens, and F. Peyrin, “Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue,” Opt. Express 26(9), 11110 (2018).
[Crossref]

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Cremel, J. T.

J. T. Cremel, Neutron and X-Ray Optics (Newnes, 2013).

Csanko, K.

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

Danner, A. J.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

Denisov, V. N.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Detlefs, C.

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

Di Michiel, M.

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

Dimper, R.

R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini., ESRF Upgrade Programme Phase II (2015–2022) Technical Design Study, The Orange Book, ESRF (2015).

Dolbnya, I. P.

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

Doyle, B. P.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

Drakopoulos, M.

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

Eigenthaler, U.

K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid Prototyping of Fresnel Zone Plates via Direct Ga+ Ion Beam Lithography for High-Resolution X-ray Imaging,” ACS Nano 7(11), 9788–9797 (2013).
[Crossref]

Englisch, U.

M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).

Eriksson, M.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Ershov, P.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
[Crossref]

Ershov, P. A.

Fairchild, B. A.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Falch, K. V.

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

Fedyanin, A. A.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

A. K. Petrov, V. O. Bessonov, K. A. Abrashitova, N. G. Kokareva, K. R. Safronov, A. A. Barannikov, P. A. Ershov, N. B. Klimova, I. I. Lyatun, V. A. Yunkin, M. Polikarpov, I. Snigireva, A. A. Fedyanin, and A. Snigirev, “Polymer X-ray refractive nano-lenses fabricated by additive technology,” Opt. Express 25(13), 14173 (2017).
[Crossref]

Felisaz, F.

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

Giannuzzi, L. A.

L. A. Giannuzzi, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer Science & Business Media, 2004).

Goikhman, A.

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
[Crossref]

Gorelick, S.

Gouillart, E.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Greentree, A. D.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Grévent, C.

K. Keskinbora, C. Grévent, M. Hirscher, M. Weigand, and G. Schütz, “Single-Step 3D Nanofabrication of Kinoform Optics via Gray-Scale Focused Ion Beam Lithography for Efficient X-Ray Focusing,” Adv. Opt. Mater. 3(6), 792–800 (2015).
[Crossref]

K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid Prototyping of Fresnel Zone Plates via Direct Ga+ Ion Beam Lithography for High-Resolution X-ray Imaging,” ACS Nano 7(11), 9788–9797 (2013).
[Crossref]

Gu, C.

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

Guigay, J. P.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Guigay, J.-P.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

Günzler, T. F.

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

Hirscher, M.

K. Keskinbora, C. Grévent, M. Hirscher, M. Weigand, and G. Schütz, “Single-Step 3D Nanofabrication of Kinoform Optics via Gray-Scale Focused Ion Beam Lithography for Efficient X-Ray Focusing,” Adv. Opt. Mater. 3(6), 792–800 (2015).
[Crossref]

Hodges, V. C.

D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, “Focused ion beam milling of diamond: effects of H 2 O on yield, surface morphology and microstructure,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 21(6), 2334–2343 (2003).
[Crossref]

Honkimäki, V.

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

Hossain, F. M.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Imhof, A.

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

Ishikawa, T.

A. Q. R. Baron, Y. Kohmura, V. V. Krishnamurthy, Y. V. Shvyd’ko, and T. Ishikawa, “Beryllium and aluminium refractive collimators for synchrotron radiation,” J. Synchrotron Radiat. 6(5), 953–956 (1999).
[Crossref]

Jiang, Q.

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

Keil, J.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Keskinbora, K.

K. Keskinbora, C. Grévent, M. Hirscher, M. Weigand, and G. Schütz, “Single-Step 3D Nanofabrication of Kinoform Optics via Gray-Scale Focused Ion Beam Lithography for Efficient X-Ray Focusing,” Adv. Opt. Mater. 3(6), 792–800 (2015).
[Crossref]

K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid Prototyping of Fresnel Zone Plates via Direct Ga+ Ion Beam Lithography for High-Resolution X-ray Imaging,” ACS Nano 7(11), 9788–9797 (2013).
[Crossref]

Khan, M.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29(1), 010601 (2011).
[Crossref]

Kim, Y. K.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

King, A.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

Klimova, N. B.

Kohmura, Y.

A. Q. R. Baron, Y. Kohmura, V. V. Krishnamurthy, Y. V. Shvyd’ko, and T. Ishikawa, “Beryllium and aluminium refractive collimators for synchrotron radiation,” J. Synchrotron Radiat. 6(5), 953–956 (1999).
[Crossref]

Kohn, V.

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Kokareva, N. G.

Kolodziej, T.

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

Kononenko, T. V.

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

Konov, V. I.

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

Kornilov, N. V.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Krishnamurthy, V. V.

A. Q. R. Baron, Y. Kohmura, V. V. Krishnamurthy, Y. V. Shvyd’ko, and T. Ishikawa, “Beryllium and aluminium refractive collimators for synchrotron radiation,” J. Synchrotron Radiat. 6(5), 953–956 (1999).
[Crossref]

Kuhlmann, M.

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

Kuijk, A.

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

Kurapova, O.

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

Kuznetsov, S.

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Langer, M.

Launer, L.

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

Lavault, B.

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

Leemann, S. C.

P. F. Tavares, S. C. Leemann, M. Sjöström, and Å Andersson, “The MAX IV storage ring project,” J. Synchrotron Radiat. 21(5), 862–877 (2014).
[Crossref]

Lengeler, B.

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Lengeler, D.

T. Roth, L. Alianelli, D. Lengeler, A. Snigirev, and F. Seiboth, “Materials for x-ray refractive lenses minimizing wavefront distortions,” MRS Bull. 42(06), 430–436 (2017).
[Crossref]

Leonard, G.

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

Leupold, O.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

Li, W.

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

Liu, D.

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

Liu, G.

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

Liu, Z.

S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
[Crossref]

Loncar, M.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29(1), 010601 (2011).
[Crossref]

Ludwig, W.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Lyatun, I. I.

Maire, E.

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

Marco, A. D.

Martyushov, S. Yu.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Mathiesen, R. H.

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

Mayer, T. M.

D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, “Focused ion beam milling of diamond: effects of H 2 O on yield, surface morphology and microstructure,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 21(6), 2334–2343 (2003).
[Crossref]

McMorrow, D.

J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics (John Wiley & Sons, 2011).

Meijer, J.-M.

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

Mokso, R.

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

Moussaid, A.

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

Napolskii, K. S.

A. Bosak, I. Snigireva, K. S. Napolskii, and A. Snigirev, “High-Resolution Transmission X-ray Microscopy: A New Tool for Mesoscopic Materials,” Adv. Mater. 22(30), 3256–3259 (2010).
[Crossref]

Nuel Gavaldà, X.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Nunez-Iglesias, J.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Olivier, C.

Ortiz, L. S.

R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini., ESRF Upgrade Programme Phase II (2015–2022) Technical Design Study, The Orange Book, ESRF (2015).

Pacureanu, A.

Pan, X.

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

Pantleon, W.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

Petrov, A. K.

Petukhov, A. V.

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

Peyrin, F.

Pflüger, J.

M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).

Philipse, A.

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

Polikarpov, M.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

A. K. Petrov, V. O. Bessonov, K. A. Abrashitova, N. G. Kokareva, K. R. Safronov, A. A. Barannikov, P. A. Ershov, N. B. Klimova, I. I. Lyatun, V. A. Yunkin, M. Polikarpov, I. Snigireva, A. A. Fedyanin, and A. Snigirev, “Polymer X-ray refractive nano-lenses fabricated by additive technology,” Opt. Express 25(13), 14173 (2017).
[Crossref]

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

M. Polikarpov, V. Polikarpov, I. Snigireva, and A. Snigirev, “Diamond X-ray Refractive Lenses with High Acceptance,” Phys. Procedia 84(7), 213–220 (2016).
[Crossref]

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

M. Polikarpov, I. Snigireva, and A. Snigirev, “X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses,” J. Synchrotron Radiat. 21(3), 484–487 (2014).
[Crossref]

Polikarpov, M. V.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Polikarpov, V.

M. Polikarpov, V. Polikarpov, I. Snigireva, and A. Snigirev, “Diamond X-ray Refractive Lenses with High Acceptance,” Phys. Procedia 84(7), 213–220 (2016).
[Crossref]

Polikarpov, V. M.

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

Polyakov, S.

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

Polyakov, S. N.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Poulsen, H. F.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

Prawer, S.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Qian, J.

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

Raftery, J. J.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

Raimondi, P.

R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini., ESRF Upgrade Programme Phase II (2015–2022) Technical Design Study, The Orange Book, ESRF (2015).

Ralchenko, V. G.

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

Rau, C.

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

Ravelli, R.

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

Reichert, H.

R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini., ESRF Upgrade Programme Phase II (2015–2022) Technical Design Study, The Orange Book, ESRF (2015).

Renier, M.

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

Röhlsberger, R.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Rossi, L.

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

Roth, T.

T. Roth, L. Alianelli, D. Lengeler, A. Snigirev, and F. Seiboth, “Materials for x-ray refractive lenses minimizing wavefront distortions,” MRS Bull. 42(06), 430–436 (2017).
[Crossref]

Rüffer, R.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

Safronov, K. R.

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Schilling, J.

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

Schlenker, M.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Schmidt, S.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

Schneider, T.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

Schönberger, J. L.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Schöps, A.

M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).

Schroer, C. G.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

Schütz, G.

K. Keskinbora, C. Grévent, M. Hirscher, M. Weigand, and G. Schütz, “Single-Step 3D Nanofabrication of Kinoform Optics via Gray-Scale Focused Ion Beam Lithography for Efficient X-Ray Focusing,” Adv. Opt. Mater. 3(6), 792–800 (2015).
[Crossref]

K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid Prototyping of Fresnel Zone Plates via Direct Ga+ Ion Beam Lithography for High-Resolution X-ray Imaging,” ACS Nano 7(11), 9788–9797 (2013).
[Crossref]

Seeck, O. H.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Seiboth, F.

T. Roth, L. Alianelli, D. Lengeler, A. Snigirev, and F. Seiboth, “Materials for x-ray refractive lenses minimizing wavefront distortions,” MRS Bull. 42(06), 430–436 (2017).
[Crossref]

Sette, F.

R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini., ESRF Upgrade Programme Phase II (2015–2022) Technical Design Study, The Orange Book, ESRF (2015).

Shvyd’ko, Y.

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

Shvyd’ko, Y. V.

A. Q. R. Baron, Y. Kohmura, V. V. Krishnamurthy, Y. V. Shvyd’ko, and T. Ishikawa, “Beryllium and aluminium refractive collimators for synchrotron radiation,” J. Synchrotron Radiat. 6(5), 953–956 (1999).
[Crossref]

Simionovici, A. S.

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

Simons, H.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

Sjöström, M.

P. F. Tavares, S. C. Leemann, M. Sjöström, and Å Andersson, “The MAX IV storage ring project,” J. Synchrotron Radiat. 21(5), 862–877 (2014).
[Crossref]

Skupin, J.

M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).

Smith, K. J. M.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29(1), 010601 (2011).
[Crossref]

Snigirev, A.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

T. Roth, L. Alianelli, D. Lengeler, A. Snigirev, and F. Seiboth, “Materials for x-ray refractive lenses minimizing wavefront distortions,” MRS Bull. 42(06), 430–436 (2017).
[Crossref]

D. Zverev, A. Barannikov, I. Snigireva, and A. Snigirev, “X-ray refractive parabolic axicon lens,” Opt. Express 25(23), 28469–28477 (2017).
[Crossref]

A. K. Petrov, V. O. Bessonov, K. A. Abrashitova, N. G. Kokareva, K. R. Safronov, A. A. Barannikov, P. A. Ershov, N. B. Klimova, I. I. Lyatun, V. A. Yunkin, M. Polikarpov, I. Snigireva, A. A. Fedyanin, and A. Snigirev, “Polymer X-ray refractive nano-lenses fabricated by additive technology,” Opt. Express 25(13), 14173 (2017).
[Crossref]

M. Polikarpov, V. Polikarpov, I. Snigireva, and A. Snigirev, “Diamond X-ray Refractive Lenses with High Acceptance,” Phys. Procedia 84(7), 213–220 (2016).
[Crossref]

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

M. Polikarpov, I. Snigireva, and A. Snigirev, “X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses,” J. Synchrotron Radiat. 21(3), 484–487 (2014).
[Crossref]

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
[Crossref]

I. Snigireva, G. B. M. Vaughan, and A. Snigirev, “High-Energy Nanoscale-Resolution X-ray Microscopy Based on Refractive Optics on a Long Beamline,” AIP Conf. Proc. 1365(1), 188–191 (2011).
[Crossref]

A. Bosak, I. Snigireva, K. S. Napolskii, and A. Snigirev, “High-Resolution Transmission X-ray Microscopy: A New Tool for Mesoscopic Materials,” Adv. Mater. 22(30), 3256–3259 (2010).
[Crossref]

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Snigirev, A. A.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Snigireva, A.

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

Snigireva, I.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

A. K. Petrov, V. O. Bessonov, K. A. Abrashitova, N. G. Kokareva, K. R. Safronov, A. A. Barannikov, P. A. Ershov, N. B. Klimova, I. I. Lyatun, V. A. Yunkin, M. Polikarpov, I. Snigireva, A. A. Fedyanin, and A. Snigirev, “Polymer X-ray refractive nano-lenses fabricated by additive technology,” Opt. Express 25(13), 14173 (2017).
[Crossref]

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

D. Zverev, A. Barannikov, I. Snigireva, and A. Snigirev, “X-ray refractive parabolic axicon lens,” Opt. Express 25(23), 28469–28477 (2017).
[Crossref]

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

M. Polikarpov, V. Polikarpov, I. Snigireva, and A. Snigirev, “Diamond X-ray Refractive Lenses with High Acceptance,” Phys. Procedia 84(7), 213–220 (2016).
[Crossref]

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

M. Polikarpov, I. Snigireva, and A. Snigirev, “X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses,” J. Synchrotron Radiat. 21(3), 484–487 (2014).
[Crossref]

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
[Crossref]

I. Snigireva, G. B. M. Vaughan, and A. Snigirev, “High-Energy Nanoscale-Resolution X-ray Microscopy Based on Refractive Optics on a Long Beamline,” AIP Conf. Proc. 1365(1), 188–191 (2011).
[Crossref]

A. Bosak, I. Snigireva, K. S. Napolskii, and A. Snigirev, “High-Resolution Transmission X-ray Microscopy: A New Tool for Mesoscopic Materials,” Adv. Mater. 22(30), 3256–3259 (2010).
[Crossref]

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Snigireva, I. I.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Sprung, M.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Stöhr, F.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

Stoupin, S.

S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
[Crossref]

Susini, J.

R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini., ESRF Upgrade Programme Phase II (2015–2022) Technical Design Study, The Orange Book, ESRF (2015).

Tavares, P. F.

P. F. Tavares, S. C. Leemann, M. Sjöström, and Å Andersson, “The MAX IV storage ring project,” J. Synchrotron Radiat. 21(5), 862–877 (2014).
[Crossref]

Terentiev, S. A.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Terentyev, S.

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

Thiess, H.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

Thijssen, J. H. J.

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

Tischer, M.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).

van Blaaderen, A.

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

van den Pol, E.

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

van der Walt, S.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Van Dyck, D.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Van Landuyt, J.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Vasile, M. J.

D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, “Focused ion beam milling of diamond: effects of H 2 O on yield, surface morphology and microstructure,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 21(6), 2334–2343 (2003).
[Crossref]

Vaughan, G. B. M.

I. Snigireva, G. B. M. Vaughan, and A. Snigirev, “High-Energy Nanoscale-Resolution X-ray Microscopy Based on Refractive Optics on a Long Beamline,” AIP Conf. Proc. 1365(1), 188–191 (2011).
[Crossref]

Wanzenberg, R.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Warner, J. D.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Weber, L.

Weckert, E.

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

Weigand, M.

K. Keskinbora, C. Grévent, M. Hirscher, M. Weigand, and G. Schütz, “Single-Step 3D Nanofabrication of Kinoform Optics via Gray-Scale Focused Ion Beam Lithography for Efficient X-Ray Focusing,” Adv. Opt. Mater. 3(6), 792–800 (2015).
[Crossref]

K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid Prototyping of Fresnel Zone Plates via Direct Ga+ Ion Beam Lithography for High-Resolution X-ray Imaging,” ACS Nano 7(11), 9788–9797 (2013).
[Crossref]

Yager, N.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Yu, B.

Yu, T.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Yunkin, V.

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
[Crossref]

Yunkin, V. A.

Zabler, S.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

Zholudev, S.

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

Zholudev, S. I.

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Zhou, H.

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

Zimmermann, Z.

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

Zverev, D.

ACS Nano (1)

K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid Prototyping of Fresnel Zone Plates via Direct Ga+ Ion Beam Lithography for High-Resolution X-ray Imaging,” ACS Nano 7(11), 9788–9797 (2013).
[Crossref]

Acta Crystallogr., Sect. D: Struct. Biol. (1)

M. Polikarpov, G. Bourenkov, I. Snigireva, A. Snigirev, Z. Zimmermann, K. Csanko, S. Brockhauser, and T. Schneider, “Visualization of protein crystals by high-energy phase-contrast X-ray imaging,” Acta Crystallogr., Sect. D: Struct. Biol. 75(11), 947–958 (2019).
[Crossref]

Adv. Mater. (1)

A. Bosak, I. Snigireva, K. S. Napolskii, and A. Snigirev, “High-Resolution Transmission X-ray Microscopy: A New Tool for Mesoscopic Materials,” Adv. Mater. 22(30), 3256–3259 (2010).
[Crossref]

Adv. Opt. Mater. (1)

K. Keskinbora, C. Grévent, M. Hirscher, M. Weigand, and G. Schütz, “Single-Step 3D Nanofabrication of Kinoform Optics via Gray-Scale Focused Ion Beam Lithography for Efficient X-Ray Focusing,” Adv. Opt. Mater. 3(6), 792–800 (2015).
[Crossref]

AIP Conf. Proc. (3)

F. Cipriani, F. Felisaz, B. Lavault, S. Brockhauser, R. Ravelli, L. Launer, G. Leonard, and M. Renier, “Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments,” AIP Conf. Proc. 879(1), 1928–1931 (2007).
[Crossref]

I. Snigireva, G. B. M. Vaughan, and A. Snigirev, “High-Energy Nanoscale-Resolution X-ray Microscopy Based on Refractive Optics on a Long Beamline,” AIP Conf. Proc. 1365(1), 188–191 (2011).
[Crossref]

S. I. Zholudev, S. A. Terentiev, S. N. Polyakov, S. Yu. Martyushov, V. N. Denisov, N. V. Kornilov, M. V. Polikarpov, A. A. Snigirev, I. I. Snigireva, and V. D. Blank, “Imaging by 2D parabolic diamond X-ray compound refractive lens at the laboratory source,” AIP Conf. Proc. 1764(1), 020006 (2016).
[Crossref]

Appl. Phys. Lett. (5)

S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Y. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107(11), 111108 (2015).
[Crossref]

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett. 77(1), 31–33 (2000).
[Crossref]

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

EPAC (1)

M. Barthelmess, U. Englisch, J. Pflüger, A. Schöps, J. Skupin, and M. Tischer, “Status of the Petra III Insertion Devices,” EPAC 08, 2320–2322 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

J. Appl. Crystallogr. (2)

A. V. Petukhov, J. H. J. Thijssen, D. C. ’t Hart, A. Imhof, A. van Blaaderen, I. P. Dolbnya, A. Snigirev, A. Moussaid, and I. Snigireva, “Microradian X-ray diffraction in colloidal photonic crystals,” J. Appl. Crystallogr. 39(2), 137–144 (2006).
[Crossref]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Crystallogr. 46(5), 1475–1480 (2013).
[Crossref]

J. Appl. Phys. (1)

Q. Jiang, D. Liu, G. Liu, Y. Chang, W. Li, X. Pan, and C. Gu, “Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties,” J. Appl. Phys. 116(4), 044308 (2014).
[Crossref]

J. Mater. Sci. (1)

K. V. Falch, D. Casari, M. Di Michiel, C. Detlefs, A. Snigireva, I. Snigireva, V. Honkimäki, and R. H. Mathiesen, “In situ hard X-ray transmission microscopy for material science,” J. Mater. Sci. 52(6), 3497–3507 (2017).
[Crossref]

J. Synchrotron Radiat. (6)

M. Polikarpov, I. Snigireva, and A. Snigirev, “X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses,” J. Synchrotron Radiat. 21(3), 484–487 (2014).
[Crossref]

C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O. H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert, “PETRA IV: the ultralow-emittance source project at DESY,” J. Synchrotron Radiat. 25(5), 1277–1290 (2018).
[Crossref]

P. F. Tavares, S. C. Leemann, M. Sjöström, and Å Andersson, “The MAX IV storage ring project,” J. Synchrotron Radiat. 21(5), 862–877 (2014).
[Crossref]

A. Q. R. Baron, Y. Kohmura, V. V. Krishnamurthy, Y. V. Shvyd’ko, and T. Ishikawa, “Beryllium and aluminium refractive collimators for synchrotron radiation,” J. Synchrotron Radiat. 6(5), 953–956 (1999).
[Crossref]

S. Antipov, S. V. Baryshev, J. E. Butler, O. Antipova, Z. Liu, and S. Stoupin, “Single-crystal diamond refractive lens for focusing X-rays in two dimensions. Erratum,” J. Synchrotron Radiat. 23(3), 850 (2016).
[Crossref]

A. Barannikov, M. Polikarpov, P. Ershov, V. Bessonov, K. Abrashitova, I. Snigireva, V. Yunkin, G. Bourenkov, T. Schneider, A. A. Fedyanin, and A. Snigirev, “Optical performance and radiation stability of polymer X-ray refractive nano-lenses,” J. Synchrotron Radiat. 26(3), 714–719 (2019).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (1)

D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, “Focused ion beam milling of diamond: effects of H 2 O on yield, surface morphology and microstructure,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 21(6), 2334–2343 (2003).
[Crossref]

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (1)

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29(1), 010601 (2011).
[Crossref]

Mater. Today (1)

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

MRS Bull. (1)

T. Roth, L. Alianelli, D. Lengeler, A. Snigirev, and F. Seiboth, “Materials for x-ray refractive lenses minimizing wavefront distortions,” MRS Bull. 42(06), 430–436 (2017).
[Crossref]

Nat. Commun. (1)

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6(1), 6098 (2015).
[Crossref]

Nature (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Opt. Commun. (1)

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

Opt. Express (4)

PeerJ (1)

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
[Crossref]

Phys. Procedia (1)

M. Polikarpov, V. Polikarpov, I. Snigireva, and A. Snigirev, “Diamond X-ray Refractive Lenses with High Acceptance,” Phys. Procedia 84(7), 213–220 (2016).
[Crossref]

Proc. SPIE (2)

M. Polikarpov, T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, V. I. Konov, I. Snigireva, P. Ershov, S. Kuznetsov, V. Yunkin, V. M. Polikarpov, and A. Snigirev, “Diamond X-ray refractive lenses produced by femto-second laser ablation,” Proc. SPIE 9963, 99630Q (2016).
[Crossref]

C. G. Schroer, M. Kuhlmann, B. Lengeler, T. F. Günzler, O. Kurapova, B. Benner, C. Rau, A. S. Simionovici, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10–18 (2002).
[Crossref]

Rev. Sci. Instrum. (2)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

RSC Adv. (1)

D. V. Byelov, J.-M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, and A. van Blaaderen, “In situ hard X-ray microscopy of self-assembly in colloidal suspensions,” RSC Adv. 3(36), 15670–15677 (2013).
[Crossref]

Other (4)

J. T. Cremel, Neutron and X-Ray Optics (Newnes, 2013).

R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini., ESRF Upgrade Programme Phase II (2015–2022) Technical Design Study, The Orange Book, ESRF (2015).

J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics (John Wiley & Sons, 2011).

L. A. Giannuzzi, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer Science & Business Media, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) SEM image of the produced diamond micro-lens demonstrates circularity of lens aperture. Tilted (54°) SEM images of the micro-lens that was cut in half (b) and surface quality assessment (c) indicate the visual absence of high and low-frequency shape errors. (d) The cut (b) was fitted with a parabolic curve with a radius of 4.8 ± 0.1 µm. The amplitude of the variation between the experimental data and the fit (red curve) reaches the value of 50 nm. The y-values of the red curve were multiplied by 10 for illustration purposes.
Fig. 2.
Fig. 2. SEM images describe the stacking process for a single lens with: (a) L-like incision and mounting of micromanipulator tip to the lens; (b) detaching the lens; (c) transfer, alignment and (d) stacking on top of the previous lens.
Fig. 3.
Fig. 3. SEM images of the CRL3 demonstrate the accurate positioning of single half-lenses with respect to each other. The third lens is inclined by 3 degrees regarding two other lenses, which still satisfies micro-scale lens positioning requirements. The inset (orthogonal projection) indicates the alignment of a single half-lens in the center of the substrate, where l = 48 µm is the distance from the center of the lens to the edge of the substrate. The dimensions shown at the isometric view: the thickness t is 42 µm; the height h and width w are equal: w = h = 2 l = 96 µm.
Fig. 4.
Fig. 4. The scheme of the experimental setup. L2 can be varied to switch between near-field imaging and focusing modes.
Fig. 5.
Fig. 5. (a) Phase-contrast image of the CRL3. Gray values correspond to the intensity of the registered photon beam. (b) Image (a) was processed using a single-distance CTF-based phase retrieval algorithm. (c) Magnified image of the aperture from (b). The circular shape of the aperture is slightly blurred in the horizontal direction, which is a consequence of a smaller transverse coherence (10 times) due to the source size. Gray values at the calibration bar correspond to the projected sample thickness at zero distance after the CRL3. Vertical and horizontal diameters of the aperture (yellow arrows) were measured as the distance between minima of the gray values.
Fig. 6.
Fig. 6. (a) Dependence of the beam size on the CRL3-to-detector distance L2. (b) X-ray image reveals the focus of the CRL3 at L2exp = 30.5 cm. (с) Beam waist at L2exp = 30.5 cm has a Gaussian profile with the size of (2.2 × 2.9) ± 0.2 µm in vertical and horizontal directions, respectively. d) The caustics in both horizontal and vertical directions indicate Gaussian profiles of the focused beam at any distance downstream of the CRL3.
Fig. 7.
Fig. 7. Grayscale image defines the ion-beam milling. The gray level corresponds to the milling dose that is deposited by the ion beam to form a lens.
Fig. 8.
Fig. 8. Single diamond micro-lens before (a) and after (b) cleaning with hot K2Cr2O acid.

Tables (1)

Tables Icon

Table 1. Expected parameters of the focusing experiment were calculated for the CRL3 assuming that a single half-lens has a radius R0 = 4.8 µm as was previously measured with SEM. Expected parameters are compared to experimental ones which were measured with X-ray focusing.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

( Δ l ) m i n 1.22 λ 2 N A
N A = A e f f / 2 F
F = R / 2 N δ
( Δ l ) m i n 1.22 λ 2 N A = 1.22 λ F A e f f = 0.61 λ R A e f f N δ
1 F = 1 L 1 + 1 L 2
D O F = 2 F A ( Δ l ) m i n = 2 F A ( 1.22 λ F A ) = 2.44 λ ( F A ) 2
S = ( Δ l ) m i n 2 + ( S L 2 L 1 ) 2 + P S F 2
I = ( x 2 + y 2 ) / 2 R

Metrics