Abstract

An experimental platform operating at the level of individual quanta and providing strong light-matter coupling is a key requirement for quantum information processing. In our work, we show that hollow-core photonic bandgap fibers filled with laser-cooled atoms might serve as such a platform, despite their typical complicated birefringence properties. To this end, we present a detailed theoretical and experimental study to identify a fiber with suitable properties to achieve operation at the single-photon level. In the fiber, we demonstrate the storage and on-demand retrieval as well as the creation of stationary light pulses, based on electromagnetically induced transparency, for weak coherent light pulses down to the single-photon level with an unconditional noise floor of 0.017(4) photons per pulse. These results clearly demonstrate the prospects of such a fiber-based platform for applications in quantum information networks.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cavity-enhanced and long-lived optical memories for two orthogonal polarizations in cold atoms

Yafei Wen, Pai Zhou, Zhongxiao Xu, Liang Yuan, Minjie Wang, Shengzhi Wang, Lirong Chen, and Hai Wang
Opt. Express 28(1) 360-368 (2020)

Nonlinear optics in hollow-core photonic bandgap fibers

Amar R. Bhagwat and Alexander L. Gaeta
Opt. Express 16(7) 5035-5047 (2008)

Coherent generation and manipulation of entangled stationary photons based on a multiple degrees of freedom quantum memory

T. H. Qiu, H. Li, M. Xie, Q. Liu, and H. Y. Ma
Opt. Express 27(20) 27477-27487 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University, 2001).
  2. D. V. Strekalov and G. Leuchs, Nonlinear Interactions and Non-classical Light (Springer, Cham, 2019), pp. 51–101.
  3. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
    [Crossref]
  4. G. Brennen, E. Giacobino, and C. Simon, “Focus on Quantum Memory,” New J. Phys. 17(5), 050201 (2015).
    [Crossref]
  5. D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
    [Crossref]
  6. Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
    [Crossref]
  7. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  8. J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary Light in Atomic Media,” Adv. Quantum Technol. 2(5-6), 1800100 (2019).
    [Crossref]
  9. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref]
  10. M. D. Lukin and A. André, “Manipulating Light Pulses via Dynamically Controlled Photonic Band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
    [Crossref]
  11. A. André, M. Bajcsy, M. D. Lukin, and A. S. Zibrov, “Nonlinear Optics with Stationary Pulses of Light,” Phys. Rev. Lett. 94(6), 063902 (2005).
    [Crossref]
  12. D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
    [Crossref]
  13. M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85(1), 013822 (2012).
    [Crossref]
  14. C. Noh and D. G. Angelakis, “Quantum simulations and many-body physics with light,” Rep. Prog. Phys. 80(1), 016401 (2017).
    [Crossref]
  15. T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
    [Crossref]
  16. Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
    [Crossref]
  17. K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
    [Crossref]
  18. Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
    [Crossref]
  19. A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
    [Crossref]
  20. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
    [Crossref]
  21. T. Takekoshi and R. J. Knize, “Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
    [Crossref]
  22. M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [Crossref]
  23. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
    [Crossref]
  24. S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
    [Crossref]
  25. K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20(7), 073001 (2018).
    [Crossref]
  26. A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
    [Crossref]
  27. M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
    [Crossref]
  28. B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber,” Phys. Rev. Lett. 114(18), 180503 (2015).
    [Crossref]
  29. C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2(4), 353–356 (2015).
    [Crossref]
  30. K. T. Kaczmarek, D. J. Saunders, M. R. Sprague, W. S. Kolthammer, A. Feizpour, P. M. Ledingham, B. Brecht, E. Poem, I. A. Walmsley, and J. Nunn, “Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers,” Opt. Lett. 40(23), 5582–5585 (2015).
    [Crossref]
  31. A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
    [Crossref]
  32. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
    [Crossref]
  33. F. Blatt, T. Halfmann, and T. Peters, “One-dimensional ultracold medium of extreme optical depth,” Opt. Lett. 39(3), 446–449 (2014).
    [Crossref]
  34. E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
    [Crossref]
  35. B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-Core Fiber Technology: The Rising of “Gas Photonics”,” Fibers 7(2), 16 (2019).
    [Crossref]
  36. J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
    [Crossref]
  37. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
    [Crossref]
  38. G. Bouwmans, F. Luan, J. Knight, P. St. J. Russell, L. Farr, B. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11(14), 1613–1620 (2003).
    [Crossref]
  39. F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A 94(4), 043833 (2016).
    [Crossref]
  40. M. Wegmuller, M. Legré, N. Gisin, T. P. Hansen, C. Jakobsen, and J. Broeng, “Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm,” Opt. Express 13(5), 1457–1467 (2005).
    [Crossref]
  41. F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13(22), 9115–9124 (2005).
    [Crossref]
  42. K. Kikuchi and T. Okoshi, “Wavelength-sweeping technique for measuring the beat length of linearly birefringent optical fibers,” Opt. Lett. 8(2), 122–123 (1983).
    [Crossref]
  43. G. Genov, T. E. Lellinger, T. Halfmann, and T. Peters, “Laser frequency stabilization by bichromatic saturation absorption spectroscopy,” J. Opt. Soc. Am. B 34(9), 2018–2030 (2017).
    [Crossref]
  44. P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: a monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
    [Crossref]
  45. M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
    [Crossref]
  46. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state polaritons,” Phys. Rev. A 65(2), 022314 (2002).
    [Crossref]
  47. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
    [Crossref]
  48. F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
    [Crossref]
  49. Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
    [Crossref]
  50. G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
    [Crossref]
  51. N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88(1), 013823 (2013).
    [Crossref]
  52. A. Hilton, C. Perrella, A. Luiten, and P. Light, “Dual-Color Magic-Wavelength Trap for Suppression of Light Shifts in Atoms,” Phys. Rev. Appl. 11(2), 024065 (2019).
    [Crossref]
  53. T. Yoon and M. Bajcsy, “Laser-cooled cesium atoms confined with a magic-wavelength dipole trap inside a hollow-core photonic-bandgap fiber,” Phys. Rev. A 99(2), 023415 (2019).
    [Crossref]
  54. M. Xin, W. S. Leong, Z. Chen, and S.-Y. Lan, “Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber,” Phys. Rev. Lett. 122(16), 163901 (2019).
    [Crossref]
  55. J. Flannery, R. Al Maruf, T. Yoon, and M. Bajcsy, “Fabry-Pérot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber,” ACS Photonics 5(2), 337–341 (2018).
    [Crossref]
  56. C.-L. Chen, Foundations for Guided-Wave Optics (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2006).
  57. W. J. Tabor and F. S. Chen, “Electromagnetic Propagation through Materials Possessing Both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
    [Crossref]

2019 (6)

J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary Light in Atomic Media,” Adv. Quantum Technol. 2(5-6), 1800100 (2019).
[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-Core Fiber Technology: The Rising of “Gas Photonics”,” Fibers 7(2), 16 (2019).
[Crossref]

A. Hilton, C. Perrella, A. Luiten, and P. Light, “Dual-Color Magic-Wavelength Trap for Suppression of Light Shifts in Atoms,” Phys. Rev. Appl. 11(2), 024065 (2019).
[Crossref]

T. Yoon and M. Bajcsy, “Laser-cooled cesium atoms confined with a magic-wavelength dipole trap inside a hollow-core photonic-bandgap fiber,” Phys. Rev. A 99(2), 023415 (2019).
[Crossref]

M. Xin, W. S. Leong, Z. Chen, and S.-Y. Lan, “Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber,” Phys. Rev. Lett. 122(16), 163901 (2019).
[Crossref]

2018 (5)

J. Flannery, R. Al Maruf, T. Yoon, and M. Bajcsy, “Fabry-Pérot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber,” ACS Photonics 5(2), 337–341 (2018).
[Crossref]

A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
[Crossref]

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20(7), 073001 (2018).
[Crossref]

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

2017 (3)

C. Noh and D. G. Angelakis, “Quantum simulations and many-body physics with light,” Rep. Prog. Phys. 80(1), 016401 (2017).
[Crossref]

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

G. Genov, T. E. Lellinger, T. Halfmann, and T. Peters, “Laser frequency stabilization by bichromatic saturation absorption spectroscopy,” J. Opt. Soc. Am. B 34(9), 2018–2030 (2017).
[Crossref]

2016 (1)

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A 94(4), 043833 (2016).
[Crossref]

2015 (4)

2014 (6)

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

F. Blatt, T. Halfmann, and T. Peters, “One-dimensional ultracold medium of extreme optical depth,” Opt. Lett. 39(3), 446–449 (2014).
[Crossref]

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

2013 (1)

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88(1), 013823 (2013).
[Crossref]

2012 (4)

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: a monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
[Crossref]

M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85(1), 013822 (2012).
[Crossref]

2010 (1)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

2009 (3)

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

2008 (1)

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

2007 (2)

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

T. Takekoshi and R. J. Knize, “Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[Crossref]

2006 (3)

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[Crossref]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[Crossref]

F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

2005 (5)

M. Wegmuller, M. Legré, N. Gisin, T. P. Hansen, C. Jakobsen, and J. Broeng, “Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm,” Opt. Express 13(5), 1457–1467 (2005).
[Crossref]

F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13(22), 9115–9124 (2005).
[Crossref]

A. André, M. Bajcsy, M. D. Lukin, and A. S. Zibrov, “Nonlinear Optics with Stationary Pulses of Light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[Crossref]

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2003 (2)

2002 (2)

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state polaritons,” Phys. Rev. A 65(2), 022314 (2002).
[Crossref]

M. D. Lukin and A. André, “Manipulating Light Pulses via Dynamically Controlled Photonic Band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[Crossref]

2001 (1)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

1983 (1)

1969 (1)

W. J. Tabor and F. S. Chen, “Electromagnetic Propagation through Materials Possessing Both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[Crossref]

Abdolvand, A.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Al Maruf, R.

J. Flannery, R. Al Maruf, T. Yoon, and M. Bajcsy, “Fabry-Pérot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber,” ACS Photonics 5(2), 337–341 (2018).
[Crossref]

Albrecht, B.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Amrani, F.

B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-Core Fiber Technology: The Rising of “Gas Photonics”,” Fibers 7(2), 16 (2019).
[Crossref]

André, A.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

A. André, M. Bajcsy, M. D. Lukin, and A. S. Zibrov, “Nonlinear Optics with Stationary Pulses of Light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[Crossref]

M. D. Lukin and A. André, “Manipulating Light Pulses via Dynamically Controlled Photonic Band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[Crossref]

Angelakis, D. G.

C. Noh and D. G. Angelakis, “Quantum simulations and many-body physics with light,” Rep. Prog. Phys. 80(1), 016401 (2017).
[Crossref]

Bajcsy, M.

T. Yoon and M. Bajcsy, “Laser-cooled cesium atoms confined with a magic-wavelength dipole trap inside a hollow-core photonic-bandgap fiber,” Phys. Rev. A 99(2), 023415 (2019).
[Crossref]

J. Flannery, R. Al Maruf, T. Yoon, and M. Bajcsy, “Fabry-Pérot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber,” ACS Photonics 5(2), 337–341 (2018).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

A. André, M. Bajcsy, M. D. Lukin, and A. S. Zibrov, “Nonlinear Optics with Stationary Pulses of Light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[Crossref]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Benabid, F.

B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-Core Fiber Technology: The Rising of “Gas Photonics”,” Fibers 7(2), 16 (2019).
[Crossref]

A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
[Crossref]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Bhagwat, A. R.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[Crossref]

Bird, D. M.

Birks, T. A.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Blatt, F.

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A 94(4), 043833 (2016).
[Crossref]

F. Blatt, T. Halfmann, and T. Peters, “One-dimensional ultracold medium of extreme optical depth,” Opt. Lett. 39(3), 446–449 (2014).
[Crossref]

Bouwmans, G.

Bradley, T.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Brecht, B.

Brennen, G.

G. Brennen, E. Giacobino, and C. Simon, “Focus on Quantum Memory,” New J. Phys. 17(5), 050201 (2015).
[Crossref]

Broderick, N. G. R.

Broeng, J.

Buchler, B. C.

J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary Light in Atomic Media,” Adv. Quantum Technol. 2(5-6), 1800100 (2019).
[Crossref]

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

Campbell, G. T.

J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary Light in Atomic Media,” Adv. Quantum Technol. 2(5-6), 1800100 (2019).
[Crossref]

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

Champion, T. F. M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Chaneliére, T.

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref]

Chang, D. E.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85(1), 013822 (2012).
[Crossref]

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Chen, C.-L.

C.-L. Chen, Foundations for Guided-Wave Optics (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2006).

Chen, F. S.

W. J. Tabor and F. S. Chen, “Electromagnetic Propagation through Materials Possessing Both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[Crossref]

Chen, H.-S.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Chen, Y.-C.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
[Crossref]

Chen, Y.-F.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
[Crossref]

Chen, Y.-H.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
[Crossref]

Chen, Z.

M. Xin, W. S. Leong, Z. Chen, and S.-Y. Lan, “Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber,” Phys. Rev. Lett. 122(16), 163901 (2019).
[Crossref]

Cho, H.-W.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

Cho, Y.-W.

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

Choi, K.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Chou, H.-C.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

Chough, Y.-T.

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University, 2001).

Clausen, C.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Dawkins, S. T.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
[Crossref]

Debord, B.

B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-Core Fiber Technology: The Rising of “Gas Photonics”,” Fibers 7(2), 16 (2019).
[Crossref]

Demler, E.

M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85(1), 013822 (2012).
[Crossref]

Demler, E. A.

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

DeSantolo, A.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

DiMarcello, F. V.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

Du, S.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

England, D. G.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Everett, J.

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

Everett, J. L.

J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary Light in Atomic Media,” Adv. Quantum Technol. 2(5-6), 1800100 (2019).
[Crossref]

Farr, L.

Feizpour, A.

Fini, J. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

Flannery, J.

J. Flannery, R. Al Maruf, T. Yoon, and M. Bajcsy, “Fabry-Pérot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber,” ACS Photonics 5(2), 337–341 (2018).
[Crossref]

Fleischhauer, M.

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88(1), 013823 (2013).
[Crossref]

F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state polaritons,” Phys. Rev. A 65(2), 022314 (2002).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref]

Gaeta, A. L.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[Crossref]

Genov, G.

Gérôme, F.

B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-Core Fiber Technology: The Rising of “Gas Photonics”,” Fibers 7(2), 16 (2019).
[Crossref]

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[Crossref]

Giacobino, E.

G. Brennen, E. Giacobino, and C. Simon, “Focus on Quantum Memory,” New J. Phys. 17(5), 050201 (2015).
[Crossref]

Gisin, N.

Goban, A.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[Crossref]

Gorshkov, A. V.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

Gouraud, B.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber,” Phys. Rev. Lett. 114(18), 180503 (2015).
[Crossref]

Gritsev, V.

M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85(1), 013822 (2012).
[Crossref]

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Hafezi, M.

M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85(1), 013822 (2012).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Hakuta, K.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20(7), 073001 (2018).
[Crossref]

Halfmann, T.

Hansen, T. P.

Hawkins, A. R.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Higginbottom, D. B.

J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary Light in Atomic Media,” Adv. Quantum Technol. 2(5-6), 1800100 (2019).
[Crossref]

Hilton, A.

A. Hilton, C. Perrella, A. Luiten, and P. Light, “Dual-Color Magic-Wavelength Trap for Suppression of Light Shifts in Atoms,” Phys. Rev. Appl. 11(2), 024065 (2019).
[Crossref]

Hilton, A. P.

A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
[Crossref]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Hood, J.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Hsiao, Y.-F.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Hulbert, J. F.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Hung, C.-C.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Hung, C.-L.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Hung, W.

Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
[Crossref]

Hurd, K.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

Jakobsen, C.

Jenkins, S. D.

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref]

Jin, X.-M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Kaczmarek, K. T.

Katori, H.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Kennedy, T. A. B.

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref]

Kien, F. L.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20(7), 073001 (2018).
[Crossref]

Kikuchi, K.

Kim, Y.-H.

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

Kimble, H. J.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[Crossref]

Knight, J.

Knight, J. C.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Knize, R. J.

T. Takekoshi and R. J. Knize, “Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[Crossref]

Kolthammer, W. S.

K. T. Kaczmarek, D. J. Saunders, M. R. Sprague, W. S. Kolthammer, A. Feizpour, P. M. Ledingham, B. Brecht, E. Poem, I. A. Walmsley, and J. Nunn, “Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers,” Opt. Lett. 40(23), 5582–5585 (2015).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Kuan, P.-C.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

Kuzmich, A.

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref]

Lam, P. K.

J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary Light in Atomic Media,” Adv. Quantum Technol. 2(5-6), 1800100 (2019).
[Crossref]

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

Lan, S.-Y.

M. Xin, W. S. Leong, Z. Chen, and S.-Y. Lan, “Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber,” Phys. Rev. Lett. 122(16), 163901 (2019).
[Crossref]

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref]

Lauk, N.

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88(1), 013823 (2013).
[Crossref]

Laurat, J.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber,” Phys. Rev. Lett. 114(18), 180503 (2015).
[Crossref]

Ledingham, P. M.

Lee, C.-H.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Lee, J.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Lee, M.-J.

Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
[Crossref]

Legré, M.

Lellinger, T. E.

Leong, W. S.

M. Xin, W. S. Leong, Z. Chen, and S.-Y. Lan, “Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber,” Phys. Rev. Lett. 122(16), 163901 (2019).
[Crossref]

Leuchs, G.

D. V. Strekalov and G. Leuchs, Nonlinear Interactions and Non-classical Light (Springer, Cham, 2019), pp. 51–101.

Li, J.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Liao, K.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Liao, W.-T.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

Light, P.

A. Hilton, C. Perrella, A. Luiten, and P. Light, “Dual-Color Magic-Wavelength Trap for Suppression of Light Shifts in Atoms,” Phys. Rev. Appl. 11(2), 024065 (2019).
[Crossref]

A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
[Crossref]

Lin, S.-X.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Lin, Y.-W.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

Luan, F.

Luiten, A.

A. Hilton, C. Perrella, A. Luiten, and P. Light, “Dual-Color Magic-Wavelength Trap for Suppression of Light Shifts in Atoms,” Phys. Rev. Appl. 11(2), 024065 (2019).
[Crossref]

Luiten, A. N.

A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
[Crossref]

Lukin, M. D.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85(1), 013822 (2012).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

A. André, M. Bajcsy, M. D. Lukin, and A. S. Zibrov, “Nonlinear Optics with Stationary Pulses of Light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[Crossref]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state polaritons,” Phys. Rev. A 65(2), 022314 (2002).
[Crossref]

M. D. Lukin and A. André, “Manipulating Light Pulses via Dynamically Controlled Photonic Band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref]

Lunt, E. J.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Lvovsky, A. I.

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: a monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

MacRae, A.

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: a monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

Maizelis, Z.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Mangan, B.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

G. Bouwmans, F. Luan, J. Knight, P. St. J. Russell, L. Farr, B. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11(14), 1613–1620 (2003).
[Crossref]

Mangan, B. J.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Martin, M.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Matsukevich, D. N.

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref]

Maxein, D.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber,” Phys. Rev. Lett. 114(18), 180503 (2015).
[Crossref]

McClung, A.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Meng, L.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

Michelberger, P. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Mitsch, R.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
[Crossref]

Monberg, E. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

Monro, T. M.

Morigi, G.

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Morin, O.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber,” Phys. Rev. Lett. 114(18), 180503 (2015).
[Crossref]

Mukasa, K.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

Muniz, J.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Nayak, K. P.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20(7), 073001 (2018).
[Crossref]

Nicholson, J. W.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

Nicolas, A.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber,” Phys. Rev. Lett. 114(18), 180503 (2015).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University, 2001).

Noh, C.

C. Noh and D. G. Angelakis, “Quantum simulations and many-body physics with light,” Rep. Prog. Phys. 80(1), 016401 (2017).
[Crossref]

Nori, F.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Nunn, J.

K. T. Kaczmarek, D. J. Saunders, M. R. Sprague, W. S. Kolthammer, A. Feizpour, P. M. Ledingham, B. Brecht, E. Poem, I. A. Walmsley, and J. Nunn, “Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers,” Opt. Lett. 40(23), 5582–5585 (2015).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

O’Brien, C.

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88(1), 013823 (2013).
[Crossref]

Okaba, S.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Okoshi, T.

Painter, O.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Palittapongarnpim, P.

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: a monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

Park, K.-K.

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

Perrella, C.

A. Hilton, C. Perrella, A. Luiten, and P. Light, “Dual-Color Magic-Wavelength Trap for Suppression of Light Shifts in Atoms,” Phys. Rev. Appl. 11(2), 024065 (2019).
[Crossref]

A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
[Crossref]

Peters, T.

G. Genov, T. E. Lellinger, T. Halfmann, and T. Peters, “Laser frequency stabilization by bichromatic saturation absorption spectroscopy,” J. Opt. Soc. Am. B 34(9), 2018–2030 (2017).
[Crossref]

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A 94(4), 043833 (2016).
[Crossref]

F. Blatt, T. Halfmann, and T. Peters, “One-dimensional ultracold medium of extreme optical depth,” Opt. Lett. 39(3), 446–449 (2014).
[Crossref]

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Poem, E.

Poletti, F.

Rauschenbeutel, A.

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2(4), 353–356 (2015).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
[Crossref]

Reitz, D.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
[Crossref]

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[Crossref]

Richardson, D. J.

Roberts, P. J.

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Robins, N.

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

Russell, P. S. J.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Sabert, H.

Sadgrove, M.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20(7), 073001 (2018).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Saunders, D. J.

Sayrin, C.

Schmidt, H.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Schneeweiss, P.

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2(4), 353–356 (2015).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
[Crossref]

Simeonov, L. S.

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A 94(4), 043833 (2016).
[Crossref]

Simon, C.

G. Brennen, E. Giacobino, and C. Simon, “Focus on Quantum Memory,” New J. Phys. 17(5), 050201 (2015).
[Crossref]

Sørensen, A. S.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

Sparkes, B. M.

A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
[Crossref]

Sprague, M. R.

K. T. Kaczmarek, D. J. Saunders, M. R. Sprague, W. S. Kolthammer, A. Feizpour, P. M. Ledingham, B. Brecht, E. Poem, I. A. Walmsley, and J. Nunn, “Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers,” Opt. Lett. 40(23), 5582–5585 (2015).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

St. J. Russell, P.

Strekalov, D. V.

D. V. Strekalov and G. Leuchs, Nonlinear Interactions and Non-classical Light (Springer, Cham, 2019), pp. 51–101.

Su, J.

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

Su, K.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Tabor, W. J.

W. J. Tabor and F. S. Chen, “Electromagnetic Propagation through Materials Possessing Both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[Crossref]

Takano, T.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Takekoshi, T.

T. Takekoshi and R. J. Knize, “Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[Crossref]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Tsai, P.-J.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Vetsch, E.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
[Crossref]

Vincetti, L.

B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-Core Fiber Technology: The Rising of “Gas Photonics”,” Fibers 7(2), 16 (2019).
[Crossref]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Vuletic, V.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Walmsley, I. A.

K. T. Kaczmarek, D. J. Saunders, M. R. Sprague, W. S. Kolthammer, A. Feizpour, P. M. Ledingham, B. Brecht, E. Poem, I. A. Walmsley, and J. Nunn, “Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers,” Opt. Lett. 40(23), 5582–5585 (2015).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Wang, J.-S.

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

Wang, Y.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Wegmuller, M.

Williams, D. P.

Windeler, R. S.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

Wu, B.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Xin, M.

M. Xin, W. S. Leong, Z. Chen, and S.-Y. Lan, “Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber,” Phys. Rev. Lett. 122(16), 163901 (2019).
[Crossref]

Yalla, R.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20(7), 073001 (2018).
[Crossref]

Yampol’skii, V.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Yan, H.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Yoon, T.

T. Yoon and M. Bajcsy, “Laser-cooled cesium atoms confined with a magic-wavelength dipole trap inside a hollow-core photonic-bandgap fiber,” Phys. Rev. A 99(2), 023415 (2019).
[Crossref]

J. Flannery, R. Al Maruf, T. Yoon, and M. Bajcsy, “Fabry-Pérot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber,” ACS Photonics 5(2), 337–341 (2018).
[Crossref]

Yu, I. A.

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
[Crossref]

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

Yu, S.-P.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

Zhang, S.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Zhou, Y.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Zhu, S.-L.

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

A. André, M. Bajcsy, M. D. Lukin, and A. S. Zibrov, “Nonlinear Optics with Stationary Pulses of Light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[Crossref]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref]

Zimmer, F. E.

F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

ACS Photonics (1)

J. Flannery, R. Al Maruf, T. Yoon, and M. Bajcsy, “Fabry-Pérot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber,” ACS Photonics 5(2), 337–341 (2018).
[Crossref]

Adv. Quantum Technol. (1)

J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary Light in Atomic Media,” Adv. Quantum Technol. 2(5-6), 1800100 (2019).
[Crossref]

Fibers (1)

B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-Core Fiber Technology: The Rising of “Gas Photonics”,” Fibers 7(2), 16 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1763–1770 (2012).
[Crossref]

J. Appl. Phys. (1)

W. J. Tabor and F. S. Chen, “Electromagnetic Propagation through Materials Possessing Both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[Crossref]

J. Opt. (1)

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20(7), 073001 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (3)

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5(1), 3808 (2014).
[Crossref]

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(1), 5085 (2014).
[Crossref]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5(1), 4096 (2014).
[Crossref]

Nat. Photonics (5)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13(5), 346–351 (2019).
[Crossref]

Nat. Phys. (1)

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Nature (3)

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref]

New J. Phys. (1)

G. Brennen, E. Giacobino, and C. Simon, “Focus on Quantum Memory,” New J. Phys. 17(5), 050201 (2015).
[Crossref]

Opt. Commun. (1)

F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

Phys. Rev. A (6)

T. Yoon and M. Bajcsy, “Laser-cooled cesium atoms confined with a magic-wavelength dipole trap inside a hollow-core photonic-bandgap fiber,” Phys. Rev. A 99(2), 023415 (2019).
[Crossref]

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88(1), 013823 (2013).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state polaritons,” Phys. Rev. A 65(2), 022314 (2002).
[Crossref]

M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85(1), 013822 (2012).
[Crossref]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media. II. Free-space model,” Phys. Rev. A 76(3), 033805 (2007).
[Crossref]

F. Blatt, L. S. Simeonov, T. Halfmann, and T. Peters, “Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber,” Phys. Rev. A 94(4), 043833 (2016).
[Crossref]

Phys. Rev. Appl. (2)

A. P. Hilton, C. Perrella, F. Benabid, B. M. Sparkes, A. N. Luiten, and P. Light, “High-efficiency cold-atom transport into a waveguide trap,” Phys. Rev. Appl. 10(4), 044034 (2018).
[Crossref]

A. Hilton, C. Perrella, A. Luiten, and P. Light, “Dual-Color Magic-Wavelength Trap for Suppression of Light Shifts in Atoms,” Phys. Rev. Appl. 11(2), 024065 (2019).
[Crossref]

Phys. Rev. Lett. (11)

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref]

Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings,” Phys. Rev. Lett. 102(21), 213601 (2009).
[Crossref]

M. Xin, W. S. Leong, Z. Chen, and S.-Y. Lan, “Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber,” Phys. Rev. Lett. 122(16), 163901 (2019).
[Crossref]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[Crossref]

T. Takekoshi and R. J. Knize, “Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balić, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber,” Phys. Rev. Lett. 114(18), 180503 (2015).
[Crossref]

Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120(18), 183602 (2018).
[Crossref]

Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Phys. Rev. Lett. 108(17), 173603 (2012).
[Crossref]

M. D. Lukin and A. André, “Manipulating Light Pulses via Dynamically Controlled Photonic Band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[Crossref]

A. André, M. Bajcsy, M. D. Lukin, and A. S. Zibrov, “Nonlinear Optics with Stationary Pulses of Light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[Crossref]

Phys. Rev. X (1)

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

Quantum Sci. Technol. (1)

G. T. Campbell, Y.-W. Cho, J. Su, J. Everett, N. Robins, P. K. Lam, and B. C. Buchler, “Direct imaging of slow, stored and stationary EIT polaritons,” Quantum Sci. Technol. 2(3), 034010 (2017).
[Crossref]

Rep. Prog. Phys. (1)

C. Noh and D. G. Angelakis, “Quantum simulations and many-body physics with light,” Rep. Prog. Phys. 80(1), 016401 (2017).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: a monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Other (3)

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University, 2001).

D. V. Strekalov and G. Leuchs, Nonlinear Interactions and Non-classical Light (Springer, Cham, 2019), pp. 51–101.

C.-L. Chen, Foundations for Guided-Wave Optics (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic experimental setup for measuring the birefringence properties of a HCPBGF. PBS: polarizing beam splitter; GTP: Glan-Thompson polarizer; HWP: half-wave plate; BS: beam splitter. (b) Scanning electron image of the central region of our HCPBGF. The fiber core has an aspect ratio of about 0.8:1. The orientation of the optical axis $\beta$ (blue) can differ from the main axis of the elliptical core (red). (c) Measured DOP (red) and output polarization direction $\theta ^{'}$ (blue) after the HCPBGF (symbols) as a function of linear input polarization direction $\theta$ for a wavelength of 780 nm. The black lines are simulations based on Eq. (1) and Eq. (2). (d) Calculated DOP (red) as a function of fiber length $l$ and absolute rotation of the input polarization (blue) using the same parameters as in (c). For a length of $l\leq 3.5\,\textrm {cm}$ and an input angle $\theta =\beta$ the polarization can be maintained sufficiently well, if we assume $\textrm {DOP} \geq 0.99$ and $\Delta \theta \leq 0.035$.
Fig. 2.
Fig. 2. (a) Simplified experimental setup. PBS: polarizing beam splitter, DM: dichroic mirror, SPCM: single-photon counting module. (b) Level scheme for EIT-based LSR and SLPs. $|1,2\rangle = 5^{2}S_{1/2},\, F=1,2$, and $|3\rangle = 5^{2}P_{1/2},\, F^{'}=1$.
Fig. 3.
Fig. 3. Demonstration of LSR down to the single-photon level. Measured normalized transmission (bars) through the HCPBGF vs. time for input pulses (black) containing $\bar {n}=17(3)$ photons, slow light (SL) (gray), and LSR for $\tau _{LSR}=200~$ns (blue) and $\tau _{LSR}=500~$ns (red). The light blue and red bars correspond to $\bar {n}=1.1(2)$ photons per input probe pulse as seen by the atoms. The solid colored lines are Gaussian least-squares fits to the corresponding experimental data. The dashed colored lines schematically show the corresponding timing of $\Omega _c^{+}(t)$. All experimental data are scaled with respect to the fit amplitude of the input pulse. The parameters are: $\Omega _c=3.6(2)\Gamma$, $d_{opt}=109(10)$, $\Delta \omega _{EIT}=1.2\Gamma$.
Fig. 4.
Fig. 4. (a) Study of SLPs inside a fiber. We show the measured normalized transmission (bars) through the HCPBGF vs. time. The Gaussian input pulse [black; scaled down by a factor of 0.2 in (a)] is measured without atoms inside the HCPBGF. All experimental data is scaled with respect to the fit amplitude of the input pulse. SL (gray) with a modulated $\Omega _c^{+}$ (gray dashed); SLP (blue) for $\Omega _c^{+}$ (blue dashed) and $\Omega _c^{-}$ (blue dotted) slightly unbalanced during $\tau _{SLP}$; backward propagating quasi-SLP (magenta) for $\Omega _c^{+}$ (magenta dashed) and $\Omega _c^{-}$ (magenta dotted) strongly unbalanced during $\tau _{SLP}$. (b) SLP retrieval efficiency $\eta _{SLP}$ vs. the ratio $\Omega _c^{-} / \Omega _c^{+}$ during the SLP period. The vertical dashed line marks the case of perfectly balanced forward and backward control Rabi frequencies. (c) Wavevector diagram showing the phase-mismatch $\Delta k = 2\pi \cdot 6.835~\textrm {GHz/c}$ for forward light storage, $\Delta k = 0$ for forward readout, and $\Delta k = 2\times 2\pi \cdot 6.835~\textrm {GHz/c}$ for backward readout. $k_{p,c}^{\pm }$ are the wavevectors of the probe and control fields in the forward $(+)$ and backward $(-)$ directions. The parameters are: $d_{opt}\sim 80(5)$, $\Omega _c^{+}=3.5(2)\Gamma$ (gray, blue, magenta dashed), $\Omega _c^{-}=[2.3(2); 3.5(2)]\Gamma$ [(blue; magenta) dotted], $\Delta _p^{+}=\Delta _c^{+}=0$, $\Delta _c^{-}=+2.5\Gamma$, $\tau _{SLP}=500$ ns. Note that the Rabi frequencies given correspond to maximum values of the dashed and dotted curves, respectively.
Fig. 5.
Fig. 5. Demonstration of SLPs down to the single-photon level. The Gaussian input pulse (black) without atoms inside the HCPBGF is shown for reference. SLPs are shown for $\bar {n}=10(2)$ [blue; same data as in Fig. 4(a)] and $\bar {n}=1.9(4)$ photons per pulse (light blue). Other experimental run for $\bar {n}=5(1)$ (red) and $\bar {n}=1.1(2)$ photons per pulse (light red) as seen by the atoms where the control timing was shifted by $-115~$ns compared to the blue data. The background noise, when the input probe pulse is blocked, is shown in green. The parameters are: $d_{opt}\sim 80(5)$ (blue), $d_{opt}\sim 70(5)$ (red), $\Omega _c^{+}=3.5(2)\Gamma$ (blue dashed), $\Omega _c^{-}=2.3(2)\Gamma$ (blue dotted), $\Omega _c^{+}=3.0(2)\Gamma$ (red dashed), $\Omega _c^{-}=2.4(2)\Gamma$ (red dotted) $\Delta _p^{+}=\Delta _c^{+}=0$, $\Delta _c^{-}=+2.5\Gamma$, $\tau _{SLP}=500$ ns. Note that the Rabi frequencies given correspond to maximum values of the dashed and dotted curves, respectively.
Fig. 6.
Fig. 6. (a) Time sequences of laser and magnetic fields for loading the HCPBGF with atoms. QP: quadrupole field of the MOT coils; $B_z$: magnetic offset field in the vertical direction that determines the zero point of the magnetic field and thereby shifts the atom cloud above the HCPBGF. (b) Sequence of the FORT and depumper for the SL/LSR/SLP experiments. (c) Sequence of the laser fields used for SL/LSR/SLP measurements.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

θ = Re [ arctan ( E y ( θ ~ , ϕ , χ ) E x ( θ ~ , ϕ , χ ) ) ] + β ,
DOP = 1 4 cos 2 χ sin 2 ϕ 2 ( sin 2 θ ~ cos ϕ 2 + cos 2 θ ~ sin ϕ 2 sin χ ) 2 ,
ϕ = 164.84 ( 5 ) , χ = 0.50 ( 5 ) , β = 0.15 ( 2 ) .
E ( z = 0 ) E 0 = ( E 0 , x E 0 , y ) = ( E 0 cos θ E 0 sin θ ) .
E ( z , t ) = J E ( z = 0 , t ) , E ( z , t ) = Re [ E ( z ) e i ω t ] ,
J = ( cos ϕ 2 i sin ϕ 2 cos χ sin ϕ 2 sin χ sin ϕ 2 sin χ cos ϕ 2 + i sin ϕ 2 cos χ ) ,
θ = Re [ arctan ( E y ( θ ~ , ϕ , χ ) E x ( θ ~ , ϕ , χ ) ) ] + β
DOP = I max I min I max + I min ,
E x ( z , t ) = A cos ( ω t ) + B sin ( ω t ) ,
E y ( z , t ) = C cos ( ω t ) + D sin ( ω t ) ,
A = E 0 [ cos θ ~ cos ϕ 2 sin θ ~ sin χ sin ϕ 2 ] ,
B = E 0 cos χ sin ϕ 2 cos θ ~ ,
C = E 0 [ cos θ ~ sin ϕ 2 sin χ + sin θ ~ cos ϕ 2 ] ,
D = E 0 sin θ ~ cos χ sin ϕ 2 .
C 2 + D 2 Δ 2 E x 2 + A 2 + B 2 Δ 2 E y 2 2 A C + B D Δ 2 E x E y = 1 ,
DOP = r 2 r 1 r 2 + r 1 = 1 4 ( A D B C ) 2 A 2 + B 2 + C 2 + D 2 .
DOP = 1 4 cos 2 χ sin 2 ϕ 2 ( sin 2 θ ~ cos ϕ 2 + cos 2 θ ~ sin ϕ 2 sin χ ) 2 .

Metrics