Abstract

We propose an ultraviolet perfect ultranarrow band absorber by coating a dielectric grating on the monolayer graphene-dielectric-metal structure. The absorber presents an ultranarrow Fano lineshape with quality (Q) factor of 70 and a nearly perfect absorption of over 99.9% in the ultraviolet region, which is ascribed to the near field coupling of the optical dissipation of graphene and guide mode resonance of the dielectric grating. Structure parameters to the influence of the performance are investigated. The structure exhibits the high optical sensitivity (S = 150 nm/RIU, S* = 48/RIU) and figure of merit (FOM = 50, FOM* = 25374) and can also be used to detect the nanoscale analyte layer of sub-nanometer thickness, suggesting great potential applications in ultra-compact efficient biosensors for a much more sensitive detection of small refractive index changes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure

Jianyang Zhou, Shuang Yan, Chawei Li, Jinfeng Zhu, and Qing H. Liu
Opt. Express 26(14) 18155-18163 (2018)

Perfect narrow band absorber for sensing applications

Shiwen Luo, Jun Zhao, Duluo Zuo, and Xinbing Wang
Opt. Express 24(9) 9288-9294 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref]
  2. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref]
  3. S. Das, D. Pandey, J. Thomas, and T. Roy, “The role of graphene and other 2D materials in solar photovoltaics,” Adv. Mater. 31(1), 1802722 (2019).
    [Crossref]
  4. X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
    [Crossref]
  5. T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
    [Crossref]
  6. Y. Cheng, H. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
    [Crossref]
  7. Y. Cheng, H. Luo, F. Chen, and R. Z. Gong, “Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency,” OSA Continuum 2(7), 2113 (2019).
    [Crossref]
  8. M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
    [Crossref]
  9. M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
    [Crossref]
  10. F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref]
  11. J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
    [Crossref]
  12. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  13. S. Thongrattanasiri, F. H. L. Koppens, and F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref]
  14. C. Chen, G. Wang, Z. Zhang, and K. Zhang, “Dual narrow-band absorber based on metal–insulator–metal configuration for refractive index sensing,” Opt. Lett. 43(15), 3630–3633 (2018).
    [Crossref]
  15. P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
    [Crossref]
  16. L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
    [Crossref]
  17. G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
    [Crossref]
  18. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
    [Crossref]
  19. I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene,” J. Appl. Phys. 106(4), 043509 (2009).
    [Crossref]
  20. S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
    [Crossref]
  21. V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
    [Crossref]
  22. J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
    [Crossref]
  23. J. Zhou, S. Yan, C. Li, J. Zhu, and Q. H. Liu, “Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure,” Opt. Express 26(14), 18155–18163 (2018).
    [Crossref]
  24. Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
    [Crossref]
  25. A. Feng, Z. Yu, and X. Sun, “Ultranarrow-band metagrating absorbers for sensing and modulation,” Opt. Express 26(22), 28197–28205 (2018).
    [Crossref]
  26. B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
    [Crossref]
  27. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref]
  28. Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Appl. Phys. Express 11(7), 072001 (2018).
    [Crossref]
  29. X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Nanoscale 9(39), 14998–15004 (2017).
    [Crossref]
  30. D. Aspnes and E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. M. J. Weber, Handbook of Optical Materials [(CRC, 2003), Chap. 1.
  32. K. F. Mak, J. Shan, and T. F. Heinz, “Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons,” Phys. Rev. Lett. 106(4), 046401 (2011).
    [Crossref]
  33. Z. Zhang, Z. Yu, Y. Liang, and T. Xu, “Dual-band nearly perfect absorber at visible frequencies,” Opt. Mater. Express 8(2), 463–468 (2018).
    [Crossref]
  34. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
    [Crossref]
  35. Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6(1), 24063 (2016).
    [Crossref]
  36. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
    [Crossref]
  37. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
    [Crossref]
  38. Y. Zhu, H. Zhang, D. Li, Z. Zhang, S. Zhang, J. Yi, and W. Wang, “Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing,” Opt. Express 26(7), 9148–9154 (2018).
    [Crossref]

2019 (2)

S. Das, D. Pandey, J. Thomas, and T. Roy, “The role of graphene and other 2D materials in solar photovoltaics,” Adv. Mater. 31(1), 1802722 (2019).
[Crossref]

Y. Cheng, H. Luo, F. Chen, and R. Z. Gong, “Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency,” OSA Continuum 2(7), 2113 (2019).
[Crossref]

2018 (14)

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

C. Chen, G. Wang, Z. Zhang, and K. Zhang, “Dual narrow-band absorber based on metal–insulator–metal configuration for refractive index sensing,” Opt. Lett. 43(15), 3630–3633 (2018).
[Crossref]

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref]

G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref]

J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
[Crossref]

J. Zhou, S. Yan, C. Li, J. Zhu, and Q. H. Liu, “Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure,” Opt. Express 26(14), 18155–18163 (2018).
[Crossref]

A. Feng, Z. Yu, and X. Sun, “Ultranarrow-band metagrating absorbers for sensing and modulation,” Opt. Express 26(22), 28197–28205 (2018).
[Crossref]

Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Appl. Phys. Express 11(7), 072001 (2018).
[Crossref]

Z. Zhang, Z. Yu, Y. Liang, and T. Xu, “Dual-band nearly perfect absorber at visible frequencies,” Opt. Mater. Express 8(2), 463–468 (2018).
[Crossref]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

Y. Cheng, H. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Y. Zhu, H. Zhang, D. Li, Z. Zhang, S. Zhang, J. Yi, and W. Wang, “Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing,” Opt. Express 26(7), 9148–9154 (2018).
[Crossref]

2017 (5)

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref]

B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
[Crossref]

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

2016 (2)

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[Crossref]

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6(1), 24063 (2016).
[Crossref]

2015 (1)

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

2014 (2)

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

2013 (1)

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref]

2012 (3)

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref]

2011 (1)

K. F. Mak, J. Shan, and T. F. Heinz, “Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons,” Phys. Rev. Lett. 106(4), 046401 (2011).
[Crossref]

2010 (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

2009 (2)

I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene,” J. Appl. Phys. 106(4), 043509 (2009).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Altug, H.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref]

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Aspnes, D.

D. Aspnes and E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Avouris, P.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Balandin, A. A.

I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene,” J. Appl. Phys. 106(4), 043509 (2009).
[Crossref]

Bejenari, I.

I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene,” J. Appl. Phys. 106(4), 043509 (2009).
[Crossref]

Braun, P. V.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Calizo, I.

I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene,” J. Appl. Phys. 106(4), 043509 (2009).
[Crossref]

Cao, X.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref]

Chen, C.

Chen, F.

Chen, H. R.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Chen, J.

B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
[Crossref]

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Chen, N.

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Chen, Q.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Chen, Z.

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

Cheng, Y.

Y. Cheng, H. Luo, F. Chen, and R. Z. Gong, “Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency,” OSA Continuum 2(7), 2113 (2019).
[Crossref]

Y. Cheng, H. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Cheng, Y. Z.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Cheng, Z. Z.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Dai, Q.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref]

Dang, V. Q.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Das, S.

S. Das, D. Pandey, J. Thomas, and T. Roy, “The role of graphene and other 2D materials in solar photovoltaics,” Adv. Mater. 31(1), 1802722 (2019).
[Crossref]

Du, G.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Duy, L. T.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Feng, A.

Feng, N.

J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
[Crossref]

Ferrari, A.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Fogelström, M.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Fu, G.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Gan, X.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Giessen, H.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Gong, C.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6(1), 24063 (2016).
[Crossref]

Gong, R. Z.

Y. Cheng, H. Luo, F. Chen, and R. Z. Gong, “Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency,” OSA Continuum 2(7), 2113 (2019).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Y. Cheng, H. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Gu, P.

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

Guo, X.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Hao, J.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

He, S.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6(1), 24063 (2016).
[Crossref]

Heinz, T. F.

K. F. Mak, J. Shan, and T. F. Heinz, “Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons,” Phys. Rev. Lett. 106(4), 046401 (2011).
[Crossref]

Hentschel, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Hu, H.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref]

Huang, H.

Huang, M. L.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Huang, Y.

Hwang, B. U.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Javier García de Abajo, F.

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Ji, R.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Jiang, H.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Kim, B. Y.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Kim, D. I.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Kinaret, J.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Koppens, F.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Lee, D. W.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Lee, N. E.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Lei, L.

Li, C.

Li, D.

Li, S.

Li, X.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Liang, Y.

Lin, J.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Lin, Q.

Lin, T.

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref]

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Liu, B.

B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
[Crossref]

Liu, F.

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Liu, G.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene,” J. Appl. Phys. 106(4), 043509 (2009).
[Crossref]

Liu, G. D.

Liu, Q. H.

J. Zhou, S. Yan, C. Li, J. Zhu, and Q. H. Liu, “Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure,” Opt. Express 26(14), 18155–18163 (2018).
[Crossref]

J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
[Crossref]

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref]

Liu, X.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Liu, Z.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Lu, H.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

Luk, C. M.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Luo, H.

Luo, S.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Mak, K. F.

K. F. Mak, J. Shan, and T. F. Heinz, “Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons,” Phys. Rev. Lett. 106(4), 046401 (2011).
[Crossref]

Mao, D.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

Mao, X. S.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Y. Cheng, H. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Meng, H. Y.

Mesch, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Mueller, T.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Ou, J. Y.

J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
[Crossref]

Palik, E.

D. Aspnes and E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pandey, D.

S. Das, D. Pandey, J. Thomas, and T. Roy, “The role of graphene and other 2D materials in solar photovoltaics,” Adv. Mater. 31(1), 1802722 (2019).
[Crossref]

Pei, M.

B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
[Crossref]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Polini, M.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Qian, L.

Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Appl. Phys. Express 11(7), 072001 (2018).
[Crossref]

Rahman, M.

I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene,” J. Appl. Phys. 106(4), 043509 (2009).
[Crossref]

Roy, T.

S. Das, D. Pandey, J. Thomas, and T. Roy, “The role of graphene and other 2D materials in solar photovoltaics,” Adv. Mater. 31(1), 1802722 (2019).
[Crossref]

Shan, J.

K. F. Mak, J. Shan, and T. F. Heinz, “Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons,” Phys. Rev. Lett. 106(4), 046401 (2011).
[Crossref]

Sheng, S.

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Sui, C.

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Sun, X.

Tang, C.

B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
[Crossref]

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Tang, L.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Tang, P.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Tao, K.

Tassin, P.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Teng, K. S.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Thomas, J.

S. Das, D. Pandey, J. Thomas, and T. Roy, “The role of graphene and other 2D materials in solar photovoltaics,” Adv. Mater. 31(1), 1802722 (2019).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Toan, L. D.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Trung, T. Q.

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Viola, G.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Vitiello, M.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Wang, G.

Wang, L. L.

Wang, P.

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Wang, W.

Wang, X.

Wang, Z.

Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Appl. Phys. Express 11(7), 072001 (2018).
[Crossref]

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials [(CRC, 2003), Chap. 1.

Wen, X.

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

Wenger, T.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Xia, F.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Xu, P.

Xu, T.

Yan, B.

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Yan, S.

J. Zhou, S. Yan, C. Li, J. Zhu, and Q. H. Liu, “Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure,” Opt. Express 26(14), 18155–18163 (2018).
[Crossref]

J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
[Crossref]

Yan, Z.

Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Appl. Phys. Express 11(7), 072001 (2018).
[Crossref]

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

Yang, X.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref]

Ye, L.

J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
[Crossref]

Yi, J.

Yong, Z.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6(1), 24063 (2016).
[Crossref]

Yu, Z.

Zeng, S.

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

Zhai, X.

Zhan, P.

Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Appl. Phys. Express 11(7), 072001 (2018).
[Crossref]

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

Zhang, H.

Y. Zhu, H. Zhang, D. Li, Z. Zhang, S. Zhang, J. Yi, and W. Wang, “Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing,” Opt. Express 26(7), 9148–9154 (2018).
[Crossref]

Y. Cheng, H. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Zhang, K.

Zhang, S.

Y. Zhu, H. Zhang, D. Li, Z. Zhang, S. Zhang, J. Yi, and W. Wang, “Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing,” Opt. Express 26(7), 9148–9154 (2018).
[Crossref]

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6(1), 24063 (2016).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Zhang, Z.

Zhao, C. J.

Zhao, J.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Zhong, H.

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

Zhou, J.

Zhu, J.

J. Zhou, S. Yan, C. Li, J. Zhu, and Q. H. Liu, “Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure,” Opt. Express 26(14), 18155–18163 (2018).
[Crossref]

J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
[Crossref]

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref]

Zhu, M.

B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
[Crossref]

Zhu, X.

B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
[Crossref]

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref]

Zhu, Y.

Zuo, D.

2D Mater. (1)

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

ACS Nano (2)

L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, and J. Hao, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6(6), 5102–5110 (2012).
[Crossref]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref]

ACS Photonics (1)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Adv. Mater. (1)

S. Das, D. Pandey, J. Thomas, and T. Roy, “The role of graphene and other 2D materials in solar photovoltaics,” Adv. Mater. 31(1), 1802722 (2019).
[Crossref]

Appl. Phys. Express (1)

Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Appl. Phys. Express 11(7), 072001 (2018).
[Crossref]

Appl. Phys. Lett. (2)

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

J. Zhu, S. Yan, N. Feng, L. Ye, J. Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett. 112(15), 153106 (2018).
[Crossref]

Carbon (1)

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

J. Appl. Phys. (1)

I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene,” J. Appl. Phys. 106(4), 043509 (2009).
[Crossref]

Mater. Lett. (1)

Y. Cheng, H. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Materials (1)

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Nanoscale (2)

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref]

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref]

Nanoscale Res. Lett. (1)

P. Wang, N. Chen, C. Tang, J. Chen, F. Liu, S. Sheng, B. Yan, and C. Sui, “Engineering the complex-valued constitutive parameters of metamaterials for perfect absorption,” Nanoscale Res. Lett. 12(1), 276 (2017).
[Crossref]

Nanotechnology (1)

Z. Yan, X. Wen, P. Gu, H. Zhong, P. Zhan, Z. Chen, and Z. Wang, “Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity,” Nanotechnology 28(47), 475203 (2017).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Nat. Nanotechnol. (2)

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Opt. Commun. (1)

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (1)

OSA Continuum (1)

Phys. Rev. Lett. (2)

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

K. F. Mak, J. Shan, and T. F. Heinz, “Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons,” Phys. Rev. Lett. 106(4), 046401 (2011).
[Crossref]

Sci. Rep. (3)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6(1), 24063 (2016).
[Crossref]

B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, and X. Zhu, “Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials,” Sci. Rep. 7(1), 17117 (2017).
[Crossref]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Small (1)

V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small 11(25), 3054–3065 (2015).
[Crossref]

Other (2)

D. Aspnes and E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

M. J. Weber, Handbook of Optical Materials [(CRC, 2003), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Three-dimensional schematic view of the DGGDM structure. (b) The front view of a unit cell of the structure.
Fig. 2.
Fig. 2. The optical property of the DGGDM structure. (a) Absorption spectra of the structures of DGGDM, GDM and Al2O3 grating (DG) under normal incidence (θ = 0°). Geometrical parameters: P = 185 nm, wg = P/2, hg = 50 nm, td = 40 nm. (b) Electric field (E) and (c) magnetic field (H) distributions of DGGDM structure at wavelength λ=283 nm. (d) Electric field (E) and (e) magnetic field (H) distributions of GDM structure at wavelength λ=283 nm. (f) Influence of the TM incident angle (θ) on light absorption of the DGGDM structure.
Fig. 3.
Fig. 3. (a) Optimized absorption spectrum of the DGGDM structure with different P and td under normal-incidence, where wg = P/2, hg = 50 nm. (b) Light absorption of the DGGDM structure as a function of refractive index of the dielectric spacer, where the geometrical parameters are as the same as shown in Fig. 2(a). All results are for TM light under normal incidence.
Fig. 4.
Fig. 4. Variations of the absorption spectra of the DGGDM structure with normal illumination and TM polarization for variation of geometric parameters: (a) dielectric grating height (hg), (b) dielectric grating strip width (wg), (c) dielectric grating refractive index (ng). In each case, other parameters are not changed as shown in Fig. 2(a).
Fig. 5.
Fig. 5. (a) Reflection spectra of the DGGDM structure with inclined incidence angle (θ) of 60° and TM polarization immersed in different environment media. (b) The resonance wavelength extracted from (a) as a function of refractive index. (c) The dependence of the resonance wavelength on the analyte layer thickness increasing from 0 to 20 nm in steps of 2 nm. Geometrical parameters: P = 130 nm, wg = P/2, hg = 50 nm, td = 25 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = Δ λ / Δ λ Δ n Δ n , F O M = S / S F W H W F W H W , S = Δ I / Δ I Δ n Δ n , F O M = S / S I I

Metrics