Abstract

A genetic algorithm is developed with a view to optimizing surface-etched grating tunable lasers over a large optimization space comprised of several variables. Using this approach, a new iteration of slotted lasers arrays are optimized showing significant improvements over previous designs. Output power, lower grating order, fabrication tolerance and performance at high temperatures are among key parameters improved. The new designs feature a much lower grating order (24-29) than used previously (37). The biggest improvement is a near doubling to slope efficiency to 0.1-0.13 mW/mA, with wavelengths from the array covering the C-band . The designs show a reduced sensitivity to etch depth variations. Designs with linewidths down to 100 kHz are also simulated. This algorithm can be readily applied to different wafer materials to efficiently generate slotted lasers designs at new wavelengths.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved performance of tunable single-mode laser array based on high-order slotted surface grating

Azat Abdullaev, Qiaoyin Lu, Weihua Guo, Michael J. Wallace, Marta Nawrocka, Frank Bello, Aaron Benson, James O’Callaghan, and John F. Donegan
Opt. Express 23(9) 12072-12078 (2015)

Athermal operation of multi-section slotted tunable lasers

M.J. Wallace, R. O’Reilly Meehan, R. Enright, F. Bello, D. McCloskey, B. Barabadi, E.N. Wang, and J. F. Donegan
Opt. Express 25(13) 14414-14426 (2017)

Nine-channel wavelength tunable single mode laser array based on slots

Wei-Hua Guo, Qiaoyin Lu, Marta Nawrocka, Azat Abdullaev, James O’Callaghan, and John F. Donegan
Opt. Express 21(8) 10215-10221 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
    [Crossref]
  2. H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
    [Crossref]
  3. A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
    [Crossref]
  4. J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
    [Crossref]
  5. D. Hofstetter, H. Zappe, J. Epler, and J. Sochtig, “Single-growth-step GaAs/AlGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30(22), 1858–1859 (1994).
    [Crossref]
  6. R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
    [Crossref]
  7. Q. Lu, W.-H. Guo, D. Byrne, and J. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
    [Crossref]
  8. M. J. Wang, H. L. Wang, P. J. Ma, F. X. Dong, A. J. Liu, and W. H. Zheng, “Eight-channel laser array with 100 GHz channel spacing based on surface-slotted structures fabricated by standard lithography,” Opt. Lett. 43(20), 4867–4870 (2018).
    [Crossref]
  9. Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.
  10. J. S. Parker, A. Sivananthan, E. Norberg, and L. A. Coldren, “Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation,” Opt. Express 20(18), 19946–19955 (2012).
    [Crossref]
  11. J. Goh, I. Fushman, D. Englund, and J. Vučković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
    [Crossref]
  12. D. F. Rêgo, I. L. G. de Souza, and V. Felix Rodriguez-Esquerre, “Ultra-broadband plasmonic groove absorbers for visible light optimized by genetic algorithms,” OSA Continuum 1(3), 796–804 (2018).
    [Crossref]
  13. S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).
    [Crossref]
  14. Z. Li, L. Stan, D. A. Czaplewski, X. Yang, and J. Gao, “Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization,” Opt. Lett. 44(1), 114–117 (2019).
    [Crossref]
  15. Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
    [Crossref]
  16. J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26(10), 13656–13665 (2018).
    [Crossref]
  17. M. Davis and R. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photonics Technol. Lett. 4(8), 838–840 (1992).
    [Crossref]
  18. M. J. Wallace, R. O’Reilly Meehan, R. Enright, F. Bello, D. McCloskey, B. Barabadi, E. N. Wang, and J. F. Donegan, “Athermal operation of multi-section slotted tunable lasers,” Opt. Express 25(13), 14414 (2017).
    [Crossref]
  19. L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 2011).
  20. A. Abdullayev, “Characterization of single-mode laser and tunable laser array based on etched high order surface gratings,” Ph.D. thesis, Trinity College Dublin (2014).
  21. K. Gao, J. Wang, L. Yang, X. He, D. Peterson, and Z. Pan, “Local oscillator linewidth limitation on 16 QAM coherent optical transmission system,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2, (2010).
  22. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in OFC/NFOEC 2008 - Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, pp. 1–3, (2008).
  23. M. Nawrocka, “Design and characterization of widely tunable semiconductor lasers based on etched slots,” Ph.D. thesis, Trinity College Dublin (2014).

2019 (3)

2018 (3)

2017 (1)

2015 (1)

2014 (1)

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

2012 (1)

2010 (1)

Q. Lu, W.-H. Guo, D. Byrne, and J. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

2007 (2)

J. Goh, I. Fushman, D. Englund, and J. Vučković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref]

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

1995 (1)

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

1994 (1)

D. Hofstetter, H. Zappe, J. Epler, and J. Sochtig, “Single-growth-step GaAs/AlGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30(22), 1858–1859 (1994).
[Crossref]

1993 (1)

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

1992 (1)

M. Davis and R. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photonics Technol. Lett. 4(8), 838–840 (1992).
[Crossref]

Abdullaev, A.

A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
[Crossref]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

Abdullayev, A.

A. Abdullayev, “Characterization of single-mode laser and tunable laser array based on etched high order surface gratings,” Ph.D. thesis, Trinity College Dublin (2014).

Barabadi, B.

Bello, F.

Benson, A.

Byrne, D.

Q. Lu, W.-H. Guo, D. Byrne, and J. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

Campbell, S. D.

Chapman, P.

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Coldren, L.

L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 2011).

Coldren, L. A.

J. S. Parker, A. Sivananthan, E. Norberg, and L. A. Coldren, “Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation,” Opt. Express 20(18), 19946–19955 (2012).
[Crossref]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Corzine, S.

L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 2011).

Cush, R.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Czaplewski, D. A.

Davis, M.

M. Davis and R. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photonics Technol. Lett. 4(8), 838–840 (1992).
[Crossref]

de Souza, I. L. G.

Donegan, J.

Q. Lu, W.-H. Guo, D. Byrne, and J. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

Donegan, J. F.

Dong, F. X.

Elbers, J.-P.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Englund, D.

Enright, R.

Epler, J.

D. Hofstetter, H. Zappe, J. Epler, and J. Sochtig, “Single-growth-step GaAs/AlGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30(22), 1858–1859 (1994).
[Crossref]

Fan, J. A.

Felix Rodriguez-Esquerre, V.

Forouhar, S.

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Fushman, I.

Gao, J.

Gao, K.

K. Gao, J. Wang, L. Yang, X. He, D. Peterson, and Z. Pan, “Local oscillator linewidth limitation on 16 QAM coherent optical transmission system,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2, (2010).

Goh, J.

Guo, W.

A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
[Crossref]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

Guo, W.-H.

Q. Lu, W.-H. Guo, D. Byrne, and J. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

He, X.

K. Gao, J. Wang, L. Yang, X. He, D. Peterson, and Z. Pan, “Local oscillator linewidth limitation on 16 QAM coherent optical transmission system,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2, (2010).

Hofstetter, D.

D. Hofstetter, H. Zappe, J. Epler, and J. Sochtig, “Single-growth-step GaAs/AlGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30(22), 1858–1859 (1994).
[Crossref]

Huang, Y.

Hunsperger, R.

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Ishii, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Jenkins, R. P.

Kasaya, K.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Keo, S.

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Lang, R.

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Lawin, M.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Lee, S. H.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Li, Z.

Liu, A. J.

Lu, Q.

A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
[Crossref]

Q. Lu, W.-H. Guo, D. Byrne, and J. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

Lynch, M.

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

Ma, P. J.

Mak, J. C. C.

Martin, R.

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Mashanovitch, M.

L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 2011).

McCloskey, D.

Menezo, S.

Min, C.

Nawrocka, M.

A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
[Crossref]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

M. Nawrocka, “Design and characterization of widely tunable semiconductor lasers based on etched slots,” Ph.D. thesis, Trinity College Dublin (2014).

Norberg, E.

O’Callaghan, J.

A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
[Crossref]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

O’Dowd, R.

M. Davis and R. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photonics Technol. Lett. 4(8), 838–840 (1992).
[Crossref]

O’Reilly Meehan, R.

Okamoto, K.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Olivier, S.

Oohashi, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Pachnicke, S.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Pan, Z.

K. Gao, J. Wang, L. Yang, X. He, D. Peterson, and Z. Pan, “Local oscillator linewidth limitation on 16 QAM coherent optical transmission system,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2, (2010).

Parker, J. S.

Penty, R. V.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Peterson, D.

K. Gao, J. Wang, L. Yang, X. He, D. Peterson, and Z. Pan, “Local oscillator linewidth limitation on 16 QAM coherent optical transmission system,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2, (2010).

Poon, J. S.

Rêgo, D. F.

Seimetz, M.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in OFC/NFOEC 2008 - Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, pp. 1–3, (2008).

Sell, D.

Shen, Y.

Shibata, Y.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Sivananthan, A.

Sochtig, J.

D. Hofstetter, H. Zappe, J. Epler, and J. Sochtig, “Single-growth-step GaAs/AlGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30(22), 1858–1859 (1994).
[Crossref]

Stan, L.

Tiberio, R.

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Veronis, G.

Vuckovic, J.

Wale, M. J.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Wallace, M. J.

Wang, E. N.

Wang, H. L.

Wang, J.

K. Gao, J. Wang, L. Yang, X. He, D. Peterson, and Z. Pan, “Local oscillator linewidth limitation on 16 QAM coherent optical transmission system,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2, (2010).

Wang, M. J.

Weldon, V.

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

Werner, D. H.

White, I. H.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Whiting, E. B.

Wilmart, Q.

Wonfor, A.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Yang, L.

K. Gao, J. Wang, L. Yang, X. He, D. Peterson, and Z. Pan, “Local oscillator linewidth limitation on 16 QAM coherent optical transmission system,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2, (2010).

Yang, X.

Yasaka, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Zappe, H.

D. Hofstetter, H. Zappe, J. Epler, and J. Sochtig, “Single-growth-step GaAs/AlGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30(22), 1858–1859 (1994).
[Crossref]

Zhen, Z.

Zheng, W. H.

Zhu, J.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Electron. Lett. (1)

D. Hofstetter, H. Zappe, J. Epler, and J. Sochtig, “Single-growth-step GaAs/AlGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30(22), 1858–1859 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Davis and R. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photonics Technol. Lett. 4(8), 838–840 (1992).
[Crossref]

R. Martin, S. Forouhar, S. Keo, R. Lang, R. Hunsperger, R. Tiberio, and P. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photonics Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Q. Lu, W.-H. Guo, D. Byrne, and J. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

OSA Continuum (1)

Other (6)

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, J. O’Callaghan, M. Lynch, V. Weldon, and J. Donegan, “Re-growth free single mode lasers based on slots suitable for photonic integration,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (2012), pp. 1–4.

L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 2011).

A. Abdullayev, “Characterization of single-mode laser and tunable laser array based on etched high order surface gratings,” Ph.D. thesis, Trinity College Dublin (2014).

K. Gao, J. Wang, L. Yang, X. He, D. Peterson, and Z. Pan, “Local oscillator linewidth limitation on 16 QAM coherent optical transmission system,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2, (2010).

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in OFC/NFOEC 2008 - Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, pp. 1–3, (2008).

M. Nawrocka, “Design and characterization of widely tunable semiconductor lasers based on etched slots,” Ph.D. thesis, Trinity College Dublin (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. High order slotted laser. (a) Schematic showing gain and grating sections with separate contacts. The grating here has three periods (b) optical image with contact to various sections and (c) epitaxy design of the laser, showing the ridge waveguide in the centre, (d) reflection spectrum of the 3 period grating (red, solid) compared with a single period (blue, dashed). (e) Schematic of the slotted grating laser with slot parameters indicated.
Fig. 2.
Fig. 2. Illustration of laser optimization in terms of key parameters. (a) Shows the case where a particular laser is poorly optimized for a given set of minimum required performance, (b) shows the optimized case with a lower operating current required.
Fig. 3.
Fig. 3. Flowchart illustrating the genetic algorithm. Fitness is the figure of merit described in Eq. (2), tournament is the selection method used, gene refers to the free geometric variables in the optimization process and mutation represents a random alteration in an individuals gene.
Fig. 4.
Fig. 4. Simulated SMSR versus wavelength detuning over one mode spacing. Red shading corresponds to SMSR below a defined minimum and green is above.
Fig. 5.
Fig. 5. Simulated performance of the optimized and previous laser arrays: slope efficiency (a), output power at respective operating current (b), operating current (c). Laser cavity length is 700 $\mu m$
Fig. 6.
Fig. 6. Simulated performance of the previous 700 μm cavity length array design and the optimized design: single mode yield (a) and maximum operating temperature (b).
Fig. 7.
Fig. 7. Simulated lasing spectra of the optimized lasers showing improved thermal behaviour for optimization 2.
Fig. 8.
Fig. 8. Fractional increase in operating current versus etch depth error.
Fig. 9.
Fig. 9. Distribution of parameters during optimization of a low linewidth laser. Red line represents parameters of the best individual in a given generation.
Fig. 10.
Fig. 10. Simulated linewidth of the optimized design. A waveguide loss of 28cm−1 used in the optimization corresponds to the most recent waveguide loss measurement; waveguide loss of 18cm−1 corresponds to the lowest waveguide loss, which has been measured for our devices.
Fig. 11.
Fig. 11. Simulated lasing spectrum for low linewidth laser, biased at 265 mA.

Tables (7)

Tables Icon

Table 1. Example of a multiple period grating composition.

Tables Icon

Table 2. Genetic algorithm parameters. Ng is the number of free varying genes.

Tables Icon

Table 3. Optimization 1.

Tables Icon

Table 4. Optimization 2.

Tables Icon

Table 5. Optimization 3- Lower single mode yield.

Tables Icon

Table 6. Linewidth requirements for a range of modulation formats [22].

Tables Icon

Table 7. Optimization results for low linewidth laser.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

p = m λ B r a g g 2 n e f f ,
F O M = I o p + I o p ( 1 η T ) w ,
Δ υ F W = ( Γ R s p ) 4 π S ( 1 + α ) ,
S M S R ( 1 ) 10 l o g 10 ( Δ α m + Δ g δ G + 1 ) ,
δ G 10 3 I t h I I t h
g r o u n d = r 1 ( λ ) × r 2 e g ( λ ) L
G T = i = 0 n ( m 0 + ( i Δ m ) ) N n
Λ s = ( m s ) λ B r a g g 2 n s

Metrics