Abstract

We demonstrate a continuously tunable, multi-Stokes Raman laser operating in the visible range (420 - 600 nm). Full spectral coverage was achieved by efficiently cascading the Raman shifted output of a tunable, frequency-doubled Ti:Sapphire laser. Using an optimized hemi-spherical external Raman cavity composed only of a diamond crystal and a single reflecting mirror, producing high power output at high conversion efficiency (>60 % from pump to Stokes) for a broad range of wavelengths across the visible. Enhancement of the cascading was achieved by controlling the polarization state of the pump and Stokes orders. The Stokes outputs exhibited a linewidth of 11 ± 1 GHz for each order, resembling the pump laser linewidth, enabling its use for the intended spectroscopic applications. Furthermore, the Raman laser performance was demonstrated by applying it for the resonance excitation of atomic transitions in calcium.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser

Muye Li, Ondrej Kitzler, and David J. Spence
Opt. Express 28(2) 1738-1744 (2020)

Ultrafast second-Stokes diamond Raman laser

Michelle Murtagh, Jipeng Lin, Johanna Trägårdh, Gail McConnell, and David J. Spence
Opt. Express 24(8) 8149-8155 (2016)

Efficient diamond Raman laser generating 65 fs pulses

Michelle Murtagh, Jipeng Lin, Richard P. Mildren, Gail McConnell, and David J. Spence
Opt. Express 23(12) 15504-15513 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, Lasers in Atomic, Molecular, and Nuclear Physics (World Scientific Publishing Co. Pte. Ltd., 1987).
  2. W. Demtröder, Laser Spectroscopy (Springer Science & Business Media, 2002).
  3. V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).
  4. U. Köster, V. Fedoseyev, and V. Mishin, “Resonant laser ionization of radioactive atoms,” Spectrochim. Acta, Part B 58(6), 1047–1068 (2003).
    [Crossref]
  5. V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
    [Crossref]
  6. S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
    [Crossref]
  7. S. Rothe, B. A. Marsh, C. Mattolat, V. N. Fedosseev, and K. Wendt, “A complementary laser system for ISOLDE RILIS,” J. Phys.: Conf. Ser. 312, 052020 (2011).
    [Crossref]
  8. E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.
  9. H. Pask, “The design and operation of solid-state raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [Crossref]
  10. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity raman conversion and raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
    [Crossref]
  11. K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
    [Crossref]
  12. R. Casula, J.-P. Penttinen, M. Guina, A. J. Kemp, and J. E. Hastie, “Cascaded crystalline raman lasers for extended wavelength coverage: continuous-wave, third-stokes operation,” Optica 5(11), 1406–1413 (2018).
    [Crossref]
  13. R. Mildren, M. Convery, H. Pask, J. Piper, and T. Mckay, “Efficient, all-solid-state, raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
    [Crossref]
  14. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond raman lasers at the 100w level using quasi-continuous-wave pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
    [Crossref]
  15. V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
    [Crossref]
  16. R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
    [Crossref]
  17. J. A. Piper and H. M. Pask, “Crystalline raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  18. E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond raman laser,” Opt. Express 19(11), 10857–10863 (2011).
    [Crossref]
  19. A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond raman laser with continuously tunable output from 3.38 to 3.80 µm,” Opt. Lett. 39(13), 4037–4040 (2014).
    [Crossref]
  20. P. Latawiec, V. Venkataraman, M. J. Burek, B. J. M. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond raman laser,” Optica 2(11), 924–928 (2015).
    [Crossref]
  21. S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond raman laser,” Opt. Lett. 40(6), 930–933 (2015).
    [Crossref]
  22. O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
    [Crossref]
  23. D. J. Spence, “Spectral effects of stimulated raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
    [Crossref]
  24. G. Hernandez, Cambridge Studies in Modern Optics 3: Fabry - Perot Interferometers (Cambridge University, 1986).
  25. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
    [Crossref]
  26. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “Cvd-diamond external cavity raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
    [Crossref]
  27. R. P. Mildren, D. W. Coutts, and D. J. Spence, “All-solid-state parametric raman anti-stokes laser at 508 nm,” Opt. Express 17(2), 810–819 (2009).
    [Crossref]
  28. T. T. Basiev, S. N. Smetanin, A. S. Shurygin, and A. V. Fedin, “Parametric coupling of frequency components at stimulated raman scattering in solids,” Phys.-Usp. 53(6), 611–617 (2010).
    [Crossref]
  29. A. McKay, A. Sabella, and R. P. Mildren, “Polarization conversion in cubic Raman crystals,” Sci. Rep. 7(1), 41702 (2017).
    [Crossref]
  30. M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order raman phonon line of diamond,” Phys. Rev. B 61(5), 3391–3395 (2000).
    [Crossref]
  31. K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
    [Crossref]
  32. A. Kramida, Yu. Ralchenko, and J. Readerand NIST ASD Team, NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available: https://physics.nist.gov/asd [2019, November 28]. National Institute of Standards and Technology, Gaithersburg, MD. (2019).
  33. K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

2019 (1)

2018 (2)

R. Casula, J.-P. Penttinen, M. Guina, A. J. Kemp, and J. E. Hastie, “Cascaded crystalline raman lasers for extended wavelength coverage: continuous-wave, third-stokes operation,” Optica 5(11), 1406–1413 (2018).
[Crossref]

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

2017 (3)

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

D. J. Spence, “Spectral effects of stimulated raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

A. McKay, A. Sabella, and R. P. Mildren, “Polarization conversion in cubic Raman crystals,” Sci. Rep. 7(1), 41702 (2017).
[Crossref]

2016 (2)

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
[Crossref]

2015 (2)

2014 (2)

2012 (1)

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

2011 (2)

S. Rothe, B. A. Marsh, C. Mattolat, V. N. Fedosseev, and K. Wendt, “A complementary laser system for ISOLDE RILIS,” J. Phys.: Conf. Ser. 312, 052020 (2011).
[Crossref]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[Crossref]

2010 (3)

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
[Crossref]

T. T. Basiev, S. N. Smetanin, A. S. Shurygin, and A. V. Fedin, “Parametric coupling of frequency components at stimulated raman scattering in solids,” Phys.-Usp. 53(6), 611–617 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

J. A. Piper and H. M. Pask, “Crystalline raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

2004 (1)

2003 (2)

H. Pask, “The design and operation of solid-state raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

U. Köster, V. Fedoseyev, and V. Mishin, “Resonant laser ionization of radioactive atoms,” Spectrochim. Acta, Part B 58(6), 1047–1068 (2003).
[Crossref]

2000 (1)

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order raman phonon line of diamond,” Phys. Rev. B 61(5), 3391–3395 (2000).
[Crossref]

1999 (1)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity raman conversion and raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Antipov, S.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity raman conversion and raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Bai, Z.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

Basiev, T. T.

T. T. Basiev, S. N. Smetanin, A. S. Shurygin, and A. V. Fedin, “Parametric coupling of frequency components at stimulated raman scattering in solids,” Phys.-Usp. 53(6), 611–617 (2010).
[Crossref]

Beserman, R.

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order raman phonon line of diamond,” Phys. Rev. B 61(5), 3391–3395 (2000).
[Crossref]

Bulu, I.

Burek, M. J.

Burns, D.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

Bursill, L. A.

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order raman phonon line of diamond,” Phys. Rev. B 61(5), 3391–3395 (2000).
[Crossref]

Butler, J. E.

Casula, R.

Chrysalidis, K.

K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
[Crossref]

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

Convery, M.

Coutts, D. W.

Dawson, M. D.

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

Day Goodacre, T.

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer Science & Business Media, 2002).

Echarri, D. T.

K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

Fedin, A. V.

T. T. Basiev, S. N. Smetanin, A. S. Shurygin, and A. V. Fedin, “Parametric coupling of frequency components at stimulated raman scattering in solids,” Phys.-Usp. 53(6), 611–617 (2010).
[Crossref]

Fedorov, D.

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Fedoseyev, V.

U. Köster, V. Fedoseyev, and V. Mishin, “Resonant laser ionization of radioactive atoms,” Spectrochim. Acta, Part B 58(6), 1047–1068 (2003).
[Crossref]

Fedosseev, V.

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Fedosseev, V. N.

K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
[Crossref]

S. Rothe, B. A. Marsh, C. Mattolat, V. N. Fedosseev, and K. Wendt, “A complementary laser system for ISOLDE RILIS,” J. Phys.: Conf. Ser. 312, 052020 (2011).
[Crossref]

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

Friel, I.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

Goodacre, T. D.

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Granados, E.

K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
[Crossref]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[Crossref]

K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

Gu, E.

Guina, M.

Hastie, J. E.

R. Casula, J.-P. Penttinen, M. Guina, A. J. Kemp, and J. E. Hastie, “Cascaded crystalline raman lasers for extended wavelength coverage: continuous-wave, third-stokes operation,” Optica 5(11), 1406–1413 (2018).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

Hausmann, B. J. M.

Hernandez, G.

G. Hernandez, Cambridge Studies in Modern Optics 3: Fabry - Perot Interferometers (Cambridge University, 1986).

Jaksch, D.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

Jasbeer, H.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

Kemp, A. J.

Kitzler, O.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond raman lasers at the 100w level using quasi-continuous-wave pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
[Crossref]

Köster, U.

U. Köster, V. Fedoseyev, and V. Mishin, “Resonant laser ionization of radioactive atoms,” Spectrochim. Acta, Part B 58(6), 1047–1068 (2003).
[Crossref]

Kramida, A.

A. Kramida, Yu. Ralchenko, and J. Readerand NIST ASD Team, NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available: https://physics.nist.gov/asd [2019, November 28]. National Institute of Standards and Technology, Gaithersburg, MD. (2019).

Latawiec, P.

Lee, K.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).

V. S. Letokhov, Lasers in Atomic, Molecular, and Nuclear Physics (World Scientific Publishing Co. Pte. Ltd., 1987).

Liu, H.

Liu, M. S.

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order raman phonon line of diamond,” Phys. Rev. B 61(5), 3391–3395 (2000).
[Crossref]

Loncar, M.

Lorenz, V.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

Lux, O.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
[Crossref]

Marsh, B.

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Marsh, B. A.

K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
[Crossref]

S. Rothe, B. A. Marsh, C. Mattolat, V. N. Fedosseev, and K. Wendt, “A complementary laser system for ISOLDE RILIS,” J. Phys.: Conf. Ser. 312, 052020 (2011).
[Crossref]

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

Mattolat, C.

S. Rothe, B. A. Marsh, C. Mattolat, V. N. Fedosseev, and K. Wendt, “A complementary laser system for ISOLDE RILIS,” J. Phys.: Conf. Ser. 312, 052020 (2011).
[Crossref]

McKay, A.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

A. McKay, A. Sabella, and R. P. Mildren, “Polarization conversion in cubic Raman crystals,” Sci. Rep. 7(1), 41702 (2017).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond raman lasers at the 100w level using quasi-continuous-wave pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
[Crossref]

Mckay, T.

Mildren, R.

Mildren, R. P.

K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
[Crossref]

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

A. McKay, A. Sabella, and R. P. Mildren, “Polarization conversion in cubic Raman crystals,” Sci. Rep. 7(1), 41702 (2017).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond raman lasers at the 100w level using quasi-continuous-wave pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond raman laser with continuously tunable output from 3.38 to 3.80 µm,” Opt. Lett. 39(13), 4037–4040 (2014).
[Crossref]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
[Crossref]

R. P. Mildren, D. W. Coutts, and D. J. Spence, “All-solid-state parametric raman anti-stokes laser at 508 nm,” Opt. Express 17(2), 810–819 (2009).
[Crossref]

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “Cvd-diamond external cavity raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
[Crossref]

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

Mishin, V.

U. Köster, V. Fedoseyev, and V. Mishin, “Resonant laser ionization of radioactive atoms,” Spectrochim. Acta, Part B 58(6), 1047–1068 (2003).
[Crossref]

Molkanov, P.

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity raman conversion and raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Nunn, J.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

Olaizola, S. M.

K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

Pask, H.

Pask, H. M.

J. A. Piper and H. M. Pask, “Crystalline raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Penttinen, J.-P.

Piper, J.

Piper, J. A.

Powell, R. C.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity raman conversion and raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Prawer, S.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order raman phonon line of diamond,” Phys. Rev. B 61(5), 3391–3395 (2000).
[Crossref]

Rabeau, J. R.

Ralchenko, Yu.

A. Kramida, Yu. Ralchenko, and J. Readerand NIST ASD Team, NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available: https://physics.nist.gov/asd [2019, November 28]. National Institute of Standards and Technology, Gaithersburg, MD. (2019).

Reader, J.

A. Kramida, Yu. Ralchenko, and J. Readerand NIST ASD Team, NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available: https://physics.nist.gov/asd [2019, November 28]. National Institute of Standards and Technology, Gaithersburg, MD. (2019).

Reilly, S.

Reim, K.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

Rossel, R.

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Rothe, S.

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

S. Rothe, B. A. Marsh, C. Mattolat, V. N. Fedosseev, and K. Wendt, “A complementary laser system for ISOLDE RILIS,” J. Phys.: Conf. Ser. 312, 052020 (2011).
[Crossref]

Sabella, A.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

A. McKay, A. Sabella, and R. P. Mildren, “Polarization conversion in cubic Raman crystals,” Sci. Rep. 7(1), 41702 (2017).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond raman laser with continuously tunable output from 3.38 to 3.80 µm,” Opt. Lett. 39(13), 4037–4040 (2014).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
[Crossref]

Sarang, S.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
[Crossref]

Savitski, V. G.

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

Seiffert, C.

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

Seliverstov, M.

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Shurygin, A. S.

T. T. Basiev, S. N. Smetanin, A. S. Shurygin, and A. V. Fedin, “Parametric coupling of frequency components at stimulated raman scattering in solids,” Phys.-Usp. 53(6), 611–617 (2010).
[Crossref]

Smetanin, S. N.

T. T. Basiev, S. N. Smetanin, A. S. Shurygin, and A. V. Fedin, “Parametric coupling of frequency components at stimulated raman scattering in solids,” Phys.-Usp. 53(6), 611–617 (2010).
[Crossref]

Spence, D. J.

K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
[Crossref]

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

D. J. Spence, “Spectral effects of stimulated raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[Crossref]

R. P. Mildren, D. W. Coutts, and D. J. Spence, “All-solid-state parametric raman anti-stokes laser at 508 nm,” Opt. Express 17(2), 810–819 (2009).
[Crossref]

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

Spizzirri, P.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

Sussman, B. J.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

Veinhard, M.

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Venkataraman, V.

Walmsley, I.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

Wendt, K.

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

S. Rothe, B. A. Marsh, C. Mattolat, V. N. Fedosseev, and K. Wendt, “A complementary laser system for ISOLDE RILIS,” J. Phys.: Conf. Ser. 312, 052020 (2011).
[Crossref]

Wendt, K. D. A.

K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
[Crossref]

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

Wilkins, S. G.

K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren, D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados, “Continuously tunable diamond raman laser for resonance laser ionization,” Opt. Lett. 44(16), 3924–3927 (2019).
[Crossref]

K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

Williams, R. J.

Diamond Relat. Mater. (1)

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater. 19(10), 1289–1295 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–14 (2018).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

J. Phys. G: Nucl. Part. Phys. (1)

V. Fedosseev, K. Chrysalidis, T. Day Goodacre, B. Marsh, S. Rothe, C. Seiffert, and K. Wendt, “Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE,” J. Phys. G: Nucl. Part. Phys. 44(8), 084006 (2017).
[Crossref]

J. Phys.: Conf. Ser. (1)

S. Rothe, B. A. Marsh, C. Mattolat, V. N. Fedosseev, and K. Wendt, “A complementary laser system for ISOLDE RILIS,” J. Phys.: Conf. Ser. 312, 052020 (2011).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

S. Rothe, T. D. Goodacre, D. Fedorov, V. Fedosseev, B. Marsh, P. Molkanov, R. Rossel, M. Seliverstov, M. Veinhard, and K. Wendt, “Laser ion beam production at cern-isolde: New features - more possibilities,” Nucl. Instrum. Methods Phys. Res., Sect. B 376, 91–96 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. (1)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity raman conversion and raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Optica (2)

Phys. Rev. B (1)

M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, “Temperature dependence of the first-order raman phonon line of diamond,” Phys. Rev. B 61(5), 3391–3395 (2000).
[Crossref]

Phys.-Usp. (1)

T. T. Basiev, S. N. Smetanin, A. S. Shurygin, and A. V. Fedin, “Parametric coupling of frequency components at stimulated raman scattering in solids,” Phys.-Usp. 53(6), 611–617 (2010).
[Crossref]

Prog. Quantum Electron. (2)

D. J. Spence, “Spectral effects of stimulated raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

H. Pask, “The design and operation of solid-state raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

Sci. Rep. (1)

A. McKay, A. Sabella, and R. P. Mildren, “Polarization conversion in cubic Raman crystals,” Sci. Rep. 7(1), 41702 (2017).
[Crossref]

Spectrochim. Acta, Part B (1)

U. Köster, V. Fedoseyev, and V. Mishin, “Resonant laser ionization of radioactive atoms,” Spectrochim. Acta, Part B 58(6), 1047–1068 (2003).
[Crossref]

Other (7)

E. Granados, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, S. G. Wilkins, K. D. A. Wendt, R. P. Mildren, and D. J. Spence, “Continuously tunable diamond raman laser for resonance ionization experiments at cern,” in Laser Congress 2019 (ASSL, LAC, LS&C), (Optical Society of America, 2019), p. JW2A.13.

V. S. Letokhov, Lasers in Atomic, Molecular, and Nuclear Physics (World Scientific Publishing Co. Pte. Ltd., 1987).

W. Demtröder, Laser Spectroscopy (Springer Science & Business Media, 2002).

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).

G. Hernandez, Cambridge Studies in Modern Optics 3: Fabry - Perot Interferometers (Cambridge University, 1986).

A. Kramida, Yu. Ralchenko, and J. Readerand NIST ASD Team, NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available: https://physics.nist.gov/asd [2019, November 28]. National Institute of Standards and Technology, Gaithersburg, MD. (2019).

K. Chrysalidis, D. T. Echarri, V. N. Fedosseev, B. A. Marsh, S. M. Olaizola, S. G. Wilkins, and E. Granados. Are preparing a manuscript to be called “First application of a diamond Raman laser for resonance ionization spectroscopy”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic layout of the Raman laser set up: An intra-cavity frequency-doubled Ti:Sapphire laser at 450 nm was used for pumping a diamond crystal. The cavity (dotted box) consists of a hemi-spherical resonator. The output coupler of the Raman cavity is the uncoated diamond surface at the pump-input side. Optical elements are not shown to scale.
Fig. 2.
Fig. 2. (top) Polarization angle of $i$th Stokes order as a function of pump polarization angle with respect to the <100> crystallographic axis. (bottom) Relative Raman gain of $i$th Stokes order as a function of pump polarization angle with respect to the <100> crystallographic axis.
Fig. 3.
Fig. 3. Measured output power and slope efficiencies for the first three Stokes orders. $q_d$ is the theoretical slope efficiency for the 1st Stokes taking into account solely the quantum defect. The pump polarization angle was adjusted to optimize output power at each Stokes order. When optimizing between the 2nd and 3rd Stokes orders, the improvement in power from tuning the pump polarization angle was small.
Fig. 4.
Fig. 4. Averaged pump, residual pump and Stokes pulses for pump polarization aligned with the <100> axis.
Fig. 5.
Fig. 5. Measurement of the Stokes near-field beam profiles including the 1st, 2nd and 3rd Stokes orders.
Fig. 6.
Fig. 6. Measured spectral profiles of (a) pump, (b) 1st Stokes, (c) 2nd Stokes, and (d) 3rd Stokes, using the LM-007 wavelength meter. The spectra were recorded using an integration time of 0.1 s (1000 shots) and a Fizeau interferometer base of 1.5 mm (FSR = 59.9 GHz, instrumental width = 5.26 GHz, resolution < 0.5 GHz).
Fig. 7.
Fig. 7. (a) Diamond Raman shifting and Ca transition $4s^{2\,1}S_0 \rightarrow 4s4p^1P_1^0$. (b) Scan of the Raman laser pumping wavelength demonstrating a resonance excitation of the Ca atomic transition at 422.79 nm (vacuum).

Tables (1)

Tables Icon

Table 1. Summary of cascading performance for various input parameters at a pump power of 932 mW

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 k j = k j-1 + k j+1
Δ k j = k j-1 + k j+1 2 k j .
θ i = π 2 1 2 [ arctan ( 2 s i n ( 2 θ i 1 ) 1 + c o s ( 2 θ i 1 ) ) ]
= g S i 3 c o s ( 2 θ i 1 ) + 2 + 2 c o s ( 2 θ i 1 ) + 3 s i n 2 ( 2 θ i 1 )

Metrics