Abstract

For achieving high efficiency fiber Bragg gratings (FBGs) utilizing infrared femtosecond laser point-by-point inscription method, it is crucial to make the inscribed periodic structure perfectly in phase. It requires a perfect alignment between the micrometer-sized laser spot with the fiber along the length. Here we report the highly precise fabrication of FBGs by infrared femtosecond laser point-by-point direct-writing method. Image recognition technique is applied to for automatically aligning the trace of the laser spot with the referenced central axis of the fiber along the whole FBG length. FBGs inscription with high spatial precision is confirmed by multiple approaches, including microscopic photographing and FBG spectroscopic measurement. 50 mm-long uniform FBGs with high reflectivity have been successfully demonstrated in a small-core single-mode silica fiber using auto-aligning technique.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings

Sergei Antipov, Martin Ams, Robert J. Williams, Eric Magi, Michael J. Withford, and Alexander Fuerbach
Opt. Express 24(1) 30-40 (2016)

Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule

A.V. Dostovalov, A.A. Wolf, A.V. Parygin, V.E. Zyubin, and S.A. Babin
Opt. Express 24(15) 16232-16237 (2016)

Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens

Aviran Halstuch, Avishay Shamir, and Amiel A. Ishaaya
Opt. Express 27(12) 16935-16944 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings, 2nd Ed. (Academic Press, 2009).
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  3. D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
    [Crossref]
  4. L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
    [Crossref]
  5. R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
    [Crossref]
  6. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [Crossref]
  7. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
    [Crossref]
  8. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref]
  9. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
    [Crossref]
  10. M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
    [Crossref]
  11. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  12. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
    [Crossref]
  13. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  14. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. t. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32(11), 1486–1488 (2007).
    [Crossref]
  15. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref]
  16. S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
    [Crossref]
  17. A. Halstuch, A. Shamir, and A. A. Ishaaya, “Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens,” Opt. Express 27(12), 16935–16944 (2019).
    [Crossref]
  18. C. Zhang, Y. Yang, C. Wang, C. Liao, and Y. Wang, “Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability,” Opt. Express 24(4), 3981–3988 (2016).
    [Crossref]
  19. X. Liu, Y. Wang, Z. Li, S. Liu, Y. Wang, C. Fu, C. Liao, Z. Bai, J. He, Z. Li, and L. Shao, “Low short-wavelength loss fiber Bragg gratings inscribed in a small-core fiber by femtosecond laser point-by-point technology,” Opt. Lett. 44(21), 5121–5124 (2019).
    [Crossref]
  20. K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
    [Crossref]
  21. S. Chernikov, K. S. Khorkov, D. A. Kochuev, R. V Chkalov, V. G. Prokoshev, and N. N. Davydov, “Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation,” J. Phys.: Conf. Ser. 1164, 012015 (2019).
    [Crossref]
  22. A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opt. Lett. 42(24), 5198–5201 (2017).
    [Crossref]
  23. https://www.nufern.com/pam/optical_fibers/984/UHNA3/
  24. H. M. Presby and D. Marcuse, “Preform index profiling (PIP),” Appl. Opt. 18(5), 671–677 (1979).
    [Crossref]
  25. D. Gregoris and K. lizuka, “Measuring cylindrically symmetric refractive-index profiles: a method,” Appl. Opt. 22(3), 424–429 (1983).
    [Crossref]
  26. K. Chah, D. Kinet, M. Wuilpart, P. Mégret, and C. Caucheteur, “Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber,” Opt. Lett. 38(4), 594–596 (2013).
    [Crossref]
  27. J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
    [Crossref]
  28. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
    [Crossref]
  29. C. Koutsides, K. Kalli, D. J. Webb, and L. Zhang, “Characterizing femtosecond laser inscribed Bragg grating spectra,” Opt. Express 19(1), 342–352 (2011).
    [Crossref]
  30. C. Koutsides, E. Davies, K. Kalli, M. Komodromos, T. Allsop, D. J. Webb, and L. Zhang, “Superstructure Fiber Gratings Via Single Step Femtosecond Laser Inscription,” J. Lightwave Technol. 30(8), 1229–1236 (2012).
    [Crossref]

2019 (3)

2017 (1)

2016 (2)

2015 (1)

2014 (1)

2013 (1)

2012 (1)

2011 (2)

2010 (2)

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref]

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

2008 (2)

2007 (2)

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

2003 (1)

1999 (2)

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

1997 (1)

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

1993 (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
[Crossref]

1989 (1)

1983 (1)

1979 (1)

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
[Crossref]

Allsop, T.

Ams, M.

Antipov, S.

Atkins, R. M.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Bai, Z.

Bartelt, H.

Becker, M.

Bennion, I.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Bergmann, J.

Bilodeau, F.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Brownlow, D. L.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Brückner, S.

Caucheteur, C.

Chah, K.

Chandonnet, P. J.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Chao, L.

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

Chernikov, S.

S. Chernikov, K. S. Khorkov, D. A. Kochuev, R. V Chkalov, V. G. Prokoshev, and N. N. Davydov, “Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation,” J. Phys.: Conf. Ser. 1164, 012015 (2019).
[Crossref]

Chkalov, R. V

S. Chernikov, K. S. Khorkov, D. A. Kochuev, R. V Chkalov, V. G. Prokoshev, and N. N. Davydov, “Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation,” J. Phys.: Conf. Ser. 1164, 012015 (2019).
[Crossref]

Davies, E.

Davydov, N. N.

S. Chernikov, K. S. Khorkov, D. A. Kochuev, R. V Chkalov, V. G. Prokoshev, and N. N. Davydov, “Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation,” J. Phys.: Conf. Ser. 1164, 012015 (2019).
[Crossref]

DeMarco, J. J.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Ding, H.

Dubov, M.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Espindola, R. P.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Feinberg, J.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

Franke, M.

Fu, C.

Fuerbach, A.

Gagné, M.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Glenn, W. H.

Glodis, P. A.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Gregoris, D.

Grobnic, D.

Grubsky, V.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

Halstuch, A.

He, J.

Henderson, G.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
[Crossref]

Ibsen, M.

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

Ioannou, A.

Ishaaya, A. A.

Jackson, S. t. D.

Johnson, D. C.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Jovanovic, N.

Kalli, K.

Kashyap, R.

Khorkov, K. S.

S. Chernikov, K. S. Khorkov, D. A. Kochuev, R. V Chkalov, V. G. Prokoshev, and N. N. Davydov, “Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation,” J. Phys.: Conf. Ser. 1164, 012015 (2019).
[Crossref]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Kinet, D.

Kochuev, D. A.

S. Chernikov, K. S. Khorkov, D. A. Kochuev, R. V Chkalov, V. G. Prokoshev, and N. N. Davydov, “Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation,” J. Phys.: Conf. Ser. 1164, 012015 (2019).
[Crossref]

Komodromos, M.

Koutsides, C.

Lai, Y.

Lapointe, J.

Li, Z.

Liao, C.

Lindner, E.

Liu, S.

Liu, X.

lizuka, K.

Loranger, S.

Lu, P.

Magi, E.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
[Crossref]

Marcuse, D.

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mégret, P.

Meltz, G.

Mezentsev, V. K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Mihailov, S. J.

Morey, W. W.

Mou, C.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Paczkowski, M. A.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Presby, H. M.

Prokoshev, V. G.

S. Chernikov, K. S. Khorkov, D. A. Kochuev, R. V Chkalov, V. G. Prokoshev, and N. N. Davydov, “Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation,” J. Phys.: Conf. Ser. 1164, 012015 (2019).
[Crossref]

Reekie, L.

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

Rothhardt, M. W.

Shamir, A.

Shao, L.

Shenk, D. S.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Simoff, D. A.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Smelser, C. W.

Starodubov, D. S.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

Steel, M. J.

Strasser, T. A.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Sugden, K.

Sun, B.

Theodosiou, A.

Unruh, J.

Walker, R. B.

Wang, C.

Wang, N. P.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Wang, Q.

Wang, Y.

Webb, D. J.

Williams, R. J.

Windeler, R. S.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Withford, M. J.

Wuilpart, M.

Yang, K.

Yang, Y.

Yin, G.

Zhang, C.

Zhang, L.

Zhao, J.

Zhou, J.

Zhou, K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Electron. Lett. (4)

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser,” IEEE Photonics Technol. Lett. 22(16), 1190–1192 (2010).
[Crossref]

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

J. Lightwave Technol. (1)

J. Phys.: Conf. Ser. (1)

S. Chernikov, K. S. Khorkov, D. A. Kochuev, R. V Chkalov, V. G. Prokoshev, and N. N. Davydov, “Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation,” J. Phys.: Conf. Ser. 1164, 012015 (2019).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (8)

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref]

C. Koutsides, K. Kalli, D. J. Webb, and L. Zhang, “Characterizing femtosecond laser inscribed Bragg grating spectra,” Opt. Express 19(1), 342–352 (2011).
[Crossref]

S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
[Crossref]

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
[Crossref]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref]

C. Zhang, Y. Yang, C. Wang, C. Liao, and Y. Wang, “Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability,” Opt. Express 24(4), 3981–3988 (2016).
[Crossref]

A. Halstuch, A. Shamir, and A. A. Ishaaya, “Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens,” Opt. Express 27(12), 16935–16944 (2019).
[Crossref]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref]

Opt. Lett. (7)

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opt. Lett. 42(24), 5198–5201 (2017).
[Crossref]

K. Chah, D. Kinet, M. Wuilpart, P. Mégret, and C. Caucheteur, “Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber,” Opt. Lett. 38(4), 594–596 (2013).
[Crossref]

X. Liu, Y. Wang, Z. Li, S. Liu, Y. Wang, C. Fu, C. Liao, Z. Bai, J. He, Z. Li, and L. Shao, “Low short-wavelength loss fiber Bragg gratings inscribed in a small-core fiber by femtosecond laser point-by-point technology,” Opt. Lett. 44(21), 5121–5124 (2019).
[Crossref]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. t. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32(11), 1486–1488 (2007).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref]

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[Crossref]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref]

Opt. Mater. Express (1)

Other (2)

R. Kashyap, Fiber Bragg Gratings, 2nd Ed. (Academic Press, 2009).

https://www.nufern.com/pam/optical_fibers/984/UHNA3/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of FBG fabrication setup of image-recognition assisted femtosecond laser direct writing. HWP: half wave plate; GL: Glan-laser polarizer; DCM: dichroic mirror.
Fig. 2.
Fig. 2. (a) CCD-captured image of the UHNA3 SMF with coating. (b) Digitalized intensity profile across fiber cross-section along the green guidance line in (a).
Fig. 3.
Fig. 3. Fiber side images and the corresponding intensity profiles when the imaging position moves from (a) 1.5 µm above the core center to (f) 1.0 µm below the core center with a step of 0.5 µm. (g) Schematic diagram of the focus to the core center on x-z plane.
Fig. 4.
Fig. 4. Optical microscopic photographs of the UHNA3 silica fibers written with FBGs: (a)-(f) from the direction perpendicular to the writing laser beam when the laser focused position moves from 1.5 µm above the central position to 1.0 µm below the central position with a step of 0.5 µm; (g) from the direction parallel to the writing laser beam.
Fig. 5.
Fig. 5. (a) Schematic diagram of the femtosecond focus beam to the core center in x-y plane. (b)Transmission spectra (left axis) and calculated reflectivity (right axis) of 6 cascaded 4 mm-long FBG samples on the plane of y = 0, following the spatial traces of (x, 0, +1.5 µm), (x, 0, +1.0 µm), (x, 0, +0.5 µm), (x, 0, 0 µm), (x, 0, -0.5 µm), (x, 0, -1.0 µm), respectively. Note that no grating spectra of z = 1.5 µm and -1.0 µm are observed. (c) Transmission spectra (left axis) and calculated reflectivity (right axis) of 15 cascaded 3 mm-long FBG samples on the plane of z = 0, following the spatial traces of (x, yi, 0 µm), where yi = 0, ±0.1, ±0.2, ±0.3, ±0.5, ±0.7, ±0.9 and ±1.0 µm, respectively. (d)(e) Normalized κ of the gratings in (b) and (c) respectively. All the transmission spectra are measured using an optical spectrum analyzer (OSA, Yokogawa, AQ6370) with a spectral resolution of 0.02 nm.
Fig. 6.
Fig. 6. (a) Transmission spectra of auto-aligned FBGs written along the core central axis and manually-aligned FBGs with a spectral resolution of 0.02 nm. All the FBGs length are 50 mm long. (b) The evolution of κL growing with the grating length.
Fig. 7.
Fig. 7. Measured transmission spectrum (left axis) and calculated coupling efficiency κ (right axis) of nine seamlessly cascaded FBGs written on the core central axis (x, 0, 0) with a resolution of 0.02 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ FBG = 2 n eff Λ ,
λ FBG = n eff v / v f f ,

Metrics