Abstract

A three-dimensional (3D) fiber probe is proposed for the measurement of micro parts. The probe is made of a fiber Bragg grating (FBG) that acts as a micro focal-length cylindrical lens (MFLC-lens) of two mutually orthogonal micro focal-length collimation (MFL-collimation) optical paths. The radial displacement of the probe tip is transformed into the shift of the fringe image collimated by the MFL-collimation optical path; the axial displacement of the probe tip is transformed into the power ratio variation caused by the Bragg wavelength shift. Advantages of the probe are high precision, low cost, high measurable aspect ratio, and capability of decoupling the 3D tactility.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional fiber probe based on orthogonal micro focal-length collimation for the measurement of micro parts

Jiwen Cui, Junying Li, Kunpeng Feng, and Jiubin Tan
Opt. Express 23(20) 26386-26398 (2015)

Double fiber probe with a single fiber Bragg grating based on the capillary-driven self-assembly fabrication method for dimensional measurement of micro parts

Jiwen Cui, Kunpeng Feng, Yang Hu, Junying Li, Hong Dang, and Jiubin Tan
Opt. Express 23(26) 32926-32940 (2015)

Fiber deflection probing method based on micro focal-length collimation

Jiubin Tan, Fei Wang, and Jiwen Cui
Opt. Express 18(3) 2925-2933 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
    [Crossref]
  2. E. Peiner, M. Balke, and L. Doering, Microelectron. Eng. 86, 984 (2009).
    [Crossref]
  3. A. Weckenmann, G. Peggs, and J. Hoffmann, Meas. Sci. Technol. 17, 504 (2006).
    [Crossref]
  4. C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
    [Crossref]
  5. R. Tutsch, M. Andraes, U. Neuschaefer-Rube, M. Petz, T. Wiedenhoefer, and M. Wissmann, “Tactile-optical microprobes for three dimensional measurements of microparts,” in Proceedings of the 10th ISMQC, Osaka, Japan (2010), p. 124.
  6. J. Cui, L. Li, and J. Tan, Opt. Lett. 36, 4689 (2011).
    [Crossref]
  7. F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, IEEE Trans. Instrum. Meas. 56, 2279 (2007).
    [Crossref]
  8. T. Pfeifer, R. Schmitt, N. Konig, and G. F. Mallmann, Chin. Opt. Lett. 9, 071202 (2011).
    [Crossref]
  9. B. Muralikrishnan, J. Stone, and J. Stoup, Precis. Eng. 30, 154 (2006).
    [Crossref]
  10. J. Tan, F. Wang, and J. Cui, Opt. Express 18, 2925 (2010).
    [Crossref]
  11. J. Cui, K. Feng, J. Li, and J. Tan, Opt. Lett. 39, 2868 (2014).
    [Crossref]
  12. H. Ji, H. Hsu, L. Kong, and A. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
    [Crossref]
  13. F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
    [Crossref]

2014 (1)

2012 (1)

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (2)

H. Ji, H. Hsu, L. Kong, and A. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[Crossref]

E. Peiner, M. Balke, and L. Doering, Microelectron. Eng. 86, 984 (2009).
[Crossref]

2007 (2)

C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
[Crossref]

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, IEEE Trans. Instrum. Meas. 56, 2279 (2007).
[Crossref]

2006 (3)

B. Muralikrishnan, J. Stone, and J. Stoup, Precis. Eng. 30, 154 (2006).
[Crossref]

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[Crossref]

A. Weckenmann, G. Peggs, and J. Hoffmann, Meas. Sci. Technol. 17, 504 (2006).
[Crossref]

Andraes, M.

R. Tutsch, M. Andraes, U. Neuschaefer-Rube, M. Petz, T. Wiedenhoefer, and M. Wissmann, “Tactile-optical microprobes for three dimensional measurements of microparts,” in Proceedings of the 10th ISMQC, Osaka, Japan (2010), p. 124.

Balke, M.

E. Peiner, M. Balke, and L. Doering, Microelectron. Eng. 86, 984 (2009).
[Crossref]

Chen, L.

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[Crossref]

Cui, J.

Dai, G.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[Crossref]

Danzebrink, H.-U.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[Crossref]

Depiereux, F.

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, IEEE Trans. Instrum. Meas. 56, 2279 (2007).
[Crossref]

Doering, L.

E. Peiner, M. Balke, and L. Doering, Microelectron. Eng. 86, 984 (2009).
[Crossref]

Fei, Y.

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[Crossref]

Feng, K.

Hoffmann, J.

A. Weckenmann, G. Peggs, and J. Hoffmann, Meas. Sci. Technol. 17, 504 (2006).
[Crossref]

Hsu, H.

H. Ji, H. Hsu, L. Kong, and A. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[Crossref]

Ji, H.

H. Ji, H. Hsu, L. Kong, and A. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[Crossref]

Kao, C.-C.

C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
[Crossref]

Koenders, L.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[Crossref]

Kong, L.

H. Ji, H. Hsu, L. Kong, and A. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[Crossref]

Konig, N.

T. Pfeifer, R. Schmitt, N. Konig, and G. F. Mallmann, Chin. Opt. Lett. 9, 071202 (2011).
[Crossref]

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, IEEE Trans. Instrum. Meas. 56, 2279 (2007).
[Crossref]

Li, J.

Li, L.

Liu, F.

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[Crossref]

Mallmann, G. F.

Muralikrishnan, B.

B. Muralikrishnan, J. Stone, and J. Stoup, Precis. Eng. 30, 154 (2006).
[Crossref]

Neuschaefer-Rube, U.

R. Tutsch, M. Andraes, U. Neuschaefer-Rube, M. Petz, T. Wiedenhoefer, and M. Wissmann, “Tactile-optical microprobes for three dimensional measurements of microparts,” in Proceedings of the 10th ISMQC, Osaka, Japan (2010), p. 124.

Peggs, G.

A. Weckenmann, G. Peggs, and J. Hoffmann, Meas. Sci. Technol. 17, 504 (2006).
[Crossref]

Peiner, E.

E. Peiner, M. Balke, and L. Doering, Microelectron. Eng. 86, 984 (2009).
[Crossref]

Petz, M.

R. Tutsch, M. Andraes, U. Neuschaefer-Rube, M. Petz, T. Wiedenhoefer, and M. Wissmann, “Tactile-optical microprobes for three dimensional measurements of microparts,” in Proceedings of the 10th ISMQC, Osaka, Japan (2010), p. 124.

Pfeifer, T.

T. Pfeifer, R. Schmitt, N. Konig, and G. F. Mallmann, Chin. Opt. Lett. 9, 071202 (2011).
[Crossref]

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, IEEE Trans. Instrum. Meas. 56, 2279 (2007).
[Crossref]

Pohlenz, F.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[Crossref]

Schmitt, R.

T. Pfeifer, R. Schmitt, N. Konig, and G. F. Mallmann, Chin. Opt. Lett. 9, 071202 (2011).
[Crossref]

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, IEEE Trans. Instrum. Meas. 56, 2279 (2007).
[Crossref]

Shih, A. J.

C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
[Crossref]

Stone, J.

B. Muralikrishnan, J. Stone, and J. Stoup, Precis. Eng. 30, 154 (2006).
[Crossref]

Stoup, J.

B. Muralikrishnan, J. Stone, and J. Stoup, Precis. Eng. 30, 154 (2006).
[Crossref]

Tan, J.

Tutsch, R.

R. Tutsch, M. Andraes, U. Neuschaefer-Rube, M. Petz, T. Wiedenhoefer, and M. Wissmann, “Tactile-optical microprobes for three dimensional measurements of microparts,” in Proceedings of the 10th ISMQC, Osaka, Japan (2010), p. 124.

Wang, F.

Weckenmann, A.

A. Weckenmann, G. Peggs, and J. Hoffmann, Meas. Sci. Technol. 17, 504 (2006).
[Crossref]

Wedding, A.

H. Ji, H. Hsu, L. Kong, and A. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[Crossref]

Wiedenhoefer, T.

R. Tutsch, M. Andraes, U. Neuschaefer-Rube, M. Petz, T. Wiedenhoefer, and M. Wissmann, “Tactile-optical microprobes for three dimensional measurements of microparts,” in Proceedings of the 10th ISMQC, Osaka, Japan (2010), p. 124.

Wilkening, G.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[Crossref]

Wissmann, M.

R. Tutsch, M. Andraes, U. Neuschaefer-Rube, M. Petz, T. Wiedenhoefer, and M. Wissmann, “Tactile-optical microprobes for three dimensional measurements of microparts,” in Proceedings of the 10th ISMQC, Osaka, Japan (2010), p. 124.

Xia, H.

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[Crossref]

Xu, M.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Trans. Instrum. Meas. (1)

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, IEEE Trans. Instrum. Meas. 56, 2279 (2007).
[Crossref]

Meas. Sci. Technol. (5)

H. Ji, H. Hsu, L. Kong, and A. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[Crossref]

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[Crossref]

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[Crossref]

A. Weckenmann, G. Peggs, and J. Hoffmann, Meas. Sci. Technol. 17, 504 (2006).
[Crossref]

C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
[Crossref]

Microelectron. Eng. (1)

E. Peiner, M. Balke, and L. Doering, Microelectron. Eng. 86, 984 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Precis. Eng. (1)

B. Muralikrishnan, J. Stone, and J. Stoup, Precis. Eng. 30, 154 (2006).
[Crossref]

Other (1)

R. Tutsch, M. Andraes, U. Neuschaefer-Rube, M. Petz, T. Wiedenhoefer, and M. Wissmann, “Tactile-optical microprobes for three dimensional measurements of microparts,” in Proceedings of the 10th ISMQC, Osaka, Japan (2010), p. 124.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the 3D probing system.
Fig. 2.
Fig. 2. Measurement principle of MFL-collimation optical path (a) free status, (b) bending of probe in radial contact status, and (c) centroid shift of the zero-order fringe image in radial contact status.
Fig. 3.
Fig. 3. Measurement principle of the matched FBG pair interrogation system (a) axial compression of the probe in axial contact status and (b) shift of Bragg wavelength and variation of power ratio caused by the axial compression of the probe.
Fig. 4.
Fig. 4. Output response curve of 3D probing system (a) radial probing along axis X, (b) radial probing along axis Y, and (c) axial probing along axis Z.
Fig. 5.
Fig. 5. Resolution of 3D fiber probe (a) radial resolution along axis X, (b) radial resolution along axis Y, and (c) axial resolution along axis Z.
Fig. 6.
Fig. 6. (a) Measurement of the ring gauges and (b) measurement of the ceramic circular disc.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

β bend , j = s o , j s t , j = ( 1 3 2 ( L o , j L P ) + 1 2 ( L o , j L P ) 3 ) ,
β collimate = s d , j s o , j = l 2 f ,
{ s t , X = s d , X / ( β bend , X · β collimate ) s t , Y = s d , Y / ( β bend , Y · β collimate ) .
Δ λ M = 0.789 λ M L P s t , Z ,
R ( λ R , λ M ) = exp [ 4 ln 2 ( λ R λ M ) 2 / ( Δ λ W , R 2 + Δ λ W , M 2 ) ] Δ λ W , R ( 1 / Δ λ W , R 2 + 1 / Δ λ W , M 2 ) ,
| λ R λ M | = ( Δ λ W , R 2 + Δ λ W , M 2 ) / ( 8 ln 2 ) .
R ( λ R , λ M ) = exp [ 4 ln 2 Δ λ W , R 2 + Δ λ W , M 2 · ( Δ λ W , R 2 + Δ λ W , M 2 8 ln 2 + 0.789 λ M L P s t , Z ) 2 ] Δ λ W , R ( 1 / Δ λ W , R 2 + 1 / Δ λ W , M 2 ) .

Metrics