Abstract

An approach is described for creating random complex screens to be used in computer simulations of arbitrary Schell-model beams with a prescribed far-field intensity distribution. Simulation examples including beam profiles with reflection symmetry and rotational symmetry, flat-top, and pyramidal shapes are presented to verify the proposed approach. A more general scenario with a nonsymmetric far-field beam shape is illustrated to demonstrate the evolution in the free-space propagation from the source plane to the far zone.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of coherence singularities of Schell-model beams

José A. Rodrigo and Tatiana Alieva
Opt. Lett. 40(15) 3635-3638 (2015)

Gaussian Schell-model arrays

Zhangrong Mei, Daomu Zhao, Olga Korotkova, and Yonghua Mao
Opt. Lett. 40(23) 5662-5665 (2015)

Twisted Schell-model beams with axial symmetry

Riccardo Borghi, Franco Gori, Giorgio Guattari, and Massimo Santarsiero
Opt. Lett. 40(19) 4504-4507 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription