Abstract

Polarizers are universal components deployed in diverse application fields including imaging, display, microscopy, interferometry, ellipsometry, and instrumentation. Here, we demonstrate design and fabrication of a new class of polarizers that are extremely compact and efficient. Based on an elemental low-loss single-resonant grating, we develop multilayer modules providing ultrahigh extinction ratio polarizers. The elemental polarizer contains a subwavelength periodic pattern of crystalline silicon on a quartz substrate. A stack of two dual-grating modules exhibits a measured extinction ratio (ER) of 100,000 in a sparse 2-mm-thick device across a bandwidth of 50nm in the telecommunications spectral region. Theoretical computations indicate that extreme values of extinction are possible. Further development of the basic concepts explored herein may lead to a new class of practical polarizers with excellent attributes.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonant grating polarizers made with silicon nitride, titanium dioxide, and silicon: Design, fabrication, and characterization

Kyu J. Lee, Jerry Giese, Laura Ajayi, Robert Magnusson, and Eric Johnson
Opt. Express 22(8) 9271-9281 (2014)

Broad visible spectral subwavelength polarizer with high extinction ratio using hyperbolic metamaterial

Wei Zhang, Xin Tan, Na Wu, Wenhao Li, Qingbin Jiao, and Shuo Yang
Opt. Express 27(13) 18399-18409 (2019)

Ultraviolet polarizer with a Ge subwavelength grating

Yuusuke Takashima, Masato Tanabe, Masanobu Haraguchi, and Yoshiki Naoi
Appl. Opt. 56(29) 8224-8229 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. H. Land, J. Opt. Soc. Am. 41, 957 (1951).
    [Crossref]
  2. J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, Opt. Express 16, 710 (2008).
    [Crossref]
  3. P. B. Clapham, M. J. Downs, and R. J. King, Appl. Opt. 8, 1965 (1969).
    [Crossref]
  4. M. Xu, H. P. Urbach, D. K. G. deBoer, and H. J. Cornelissen, Opt. Express 13, 2303 (2005).
    [Crossref]
  5. J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, Adv. Opt. Mater. 6, 1800205 (2018).
    [Crossref]
  6. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, and Y. Fainman, J. Opt. Soc. Am. 14, 1627 (1997).
    [Crossref]
  7. D. Delbeke, R. Baets, and P. Muys, Appl. Opt. 43, 6157 (2004).
    [Crossref]
  8. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [Crossref]
  9. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
    [Crossref]
  10. K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
    [Crossref]
  11. K. J. Lee, J. Giese, L. Ajayi, R. Magnusson, and E. Johnson, Opt. Express 22, 9271 (2014).
    [Crossref]
  12. J. W. Yoon, K. J. Lee, and R. Magnusson, Opt. Express 23, 28849 (2015).
    [Crossref]
  13. M. Kraemer and T. Baur, Proc. SPIE 10655, 1065505 (2018).
    [Crossref]

2018 (2)

J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, Adv. Opt. Mater. 6, 1800205 (2018).
[Crossref]

M. Kraemer and T. Baur, Proc. SPIE 10655, 1065505 (2018).
[Crossref]

2015 (1)

2014 (1)

2008 (2)

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
[Crossref]

J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, Opt. Express 16, 710 (2008).
[Crossref]

2005 (1)

2004 (2)

1997 (1)

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, and Y. Fainman, J. Opt. Soc. Am. 14, 1627 (1997).
[Crossref]

1993 (1)

1969 (1)

1951 (1)

Ajayi, L.

Baets, R.

Baur, T.

M. Kraemer and T. Baur, Proc. SPIE 10655, 1065505 (2018).
[Crossref]

Britton, B.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
[Crossref]

Cheang-Wong, J. C.

Cheng, C. C.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, and Y. Fainman, J. Opt. Soc. Am. 14, 1627 (1997).
[Crossref]

Chou, H. P.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, and Y. Fainman, J. Opt. Soc. Am. 14, 1627 (1997).
[Crossref]

Clapham, P. B.

Cornelissen, H. J.

Crespo-Sosa, A.

deBoer, D. K. G.

Delbeke, D.

Ding, Y.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
[Crossref]

Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
[Crossref]

Donkor, E.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
[Crossref]

Downs, M. J.

Fainman, Y.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, and Y. Fainman, J. Opt. Soc. Am. 14, 1627 (1997).
[Crossref]

Giese, J.

Jang, H.-I.

J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, Adv. Opt. Mater. 6, 1800205 (2018).
[Crossref]

Johnson, E.

Kang, J.

J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, Adv. Opt. Mater. 6, 1800205 (2018).
[Crossref]

Kim, J.

J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, Adv. Opt. Mater. 6, 1800205 (2018).
[Crossref]

King, R. J.

Kraemer, M.

M. Kraemer and T. Baur, Proc. SPIE 10655, 1065505 (2018).
[Crossref]

LaComb, R.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
[Crossref]

Land, E. H.

Lee, J.-Y.

J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, Adv. Opt. Mater. 6, 1800205 (2018).
[Crossref]

Lee, K. J.

J. W. Yoon, K. J. Lee, and R. Magnusson, Opt. Express 23, 28849 (2015).
[Crossref]

K. J. Lee, J. Giese, L. Ajayi, R. Magnusson, and E. Johnson, Opt. Express 22, 9271 (2014).
[Crossref]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
[Crossref]

Magnusson, R.

Muys, P.

Noguez, C.

Oliver, A.

Park, J. H.

J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, Adv. Opt. Mater. 6, 1800205 (2018).
[Crossref]

Reyes-Esqueda, J. A.

Rodríguez-Fernández, L.

Salvekar, A. A.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, and Y. Fainman, J. Opt. Soc. Am. 14, 1627 (1997).
[Crossref]

Scherer, A.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, and Y. Fainman, J. Opt. Soc. Am. 14, 1627 (1997).
[Crossref]

Shokooh-Saremi, M.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
[Crossref]

Silva, H.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).
[Crossref]

Torres-Torres, C.

Tyan, R. C.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, and Y. Fainman, J. Opt. Soc. Am. 14, 1627 (1997).
[Crossref]

Urbach, H. P.

Wang, S. S.

Xu, M.

Yoon, J. W.

Yun, H.-S.

J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, Adv. Opt. Mater. 6, 1800205 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Elemental metasurface polarizer. (a) Schematic of the individual metasurface polarizer, made with a Si grating on a quartz substrate, indicating high transmission for TM polarization while suppressing the transmission of the TE polarization state. The physical parameters of the subwavelength grating model are period ( Λ ), grating depth ( d g ), and fill factor (F). Transmission map of a subwavelength Si grating as a function of fill factor F for (b) TE and (c) TM polarization states where Λ = 0.95 μm and d g = 0.22 μm and where F = 0.28 is marked with dashed lines.
Fig. 2.
Fig. 2. Dual-cascaded metasurface polarizer module. The calculated transmission spectra for (a) TE and (b) TM polarization states. (c) Transmission spectra pertinent to white dashed lines illustrated in the transmission map of the individual device (A, B) and stacked device ( A , B ). (d) Calculated extinction ratio of the elemental and the dual-cascaded module. Angular transmission maps of cascaded device with d gap = 1.5 μm for (e) TE and (f) TM polarization states. Inset in (a) shows a schematic of a double-cascaded polarizer module separated by an air gap with thickness of d gap .
Fig. 3.
Fig. 3. Fabricated elemental and dual-cascaded polarizers. (a) SEM image of the fabricated elemental polarizer. (b) The simulated and experimental transmission spectra for TE and TM polarization states of the single device. (c) Measured extinction ratio of the elemental polarizer. (d) Side view SEM image of the fabricated polarizer module with controlled separation distance. (e) TE and TM polarized transmittance of the cascaded polarizer. (f) Measured extinction ratio of the dual-grating module.
Fig. 4.
Fig. 4. Dual-module polarizer. (a) Schematic layout. (b) Calculated extinction ratio. The inset shows a photograph of our polarizer. (c) Logarithmic-scale zero-order transmission spectra for TE and TM polarization states. (d) Extinction ratio of the fabricated polarizer.
Fig. 5.
Fig. 5. High extinction ratio measurement setup. (a) Schematic of the setup containing a pair of polarizers with extinction ratios of ER 1 and ER 2 . The parallel and crossed alignment of these polarizers is realized by rotating the Glan–Thompson polarizer. (b) Measured pair contrast ratio as in Fig. 4(d) (black line) and calculated pair contrast ratio based on Eq. (1) (blue line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ER 2 = r 12 ER 1 1 ER 1 r 12 ,