Abstract

This paper reports a high-performance transparent electromagnetic shielding material based on an ultrathin and large-area metallic nanomesh, which was fabricated by a facile and rational process utilizing ultraviolet lithography and the ion beam etching technique. Measurements reveal that a single-layer metallic nanomesh can harvest excellent shielding effectiveness exceeding 40 dB in the wide frequency range from 500 MHz to 40 GHz. Besides, efficient light transmittance (85% at 550 nm) is achieved in both visible and near-infrared regions. Furthermore, the proposed structure remains excellent performance at wide incident angles even up to 50°. Hence, it is believed that this metallic nanomesh with easy fabrication can be a potential alternative in the transparent electromagnetic shielding domain.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding

Zhou-ying Jiang, Wenbin Huang, Lin-sen Chen, and Yan-hua Liu
Opt. Express 27(17) 24194-24206 (2019)

Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction

Weiqi Wang, Benfeng Bai, Qian Zhou, Kai Ni, and Hui Lin
Opt. Mater. Express 8(11) 3485-3493 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, “Selective metal pattern formation and its EMI shielding efficiency,” Appl. Surf. Sci. 252(8), 2665–2672 (2006).
    [Crossref]
  2. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
    [Crossref]
  3. M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
    [Crossref]
  4. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
    [Crossref]
  5. S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
    [Crossref]
  6. S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
    [Crossref]
  7. B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
    [Crossref]
  8. J. Han, X. Wang, Y. Qiu, J. Zhu, and P. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
    [Crossref]
  9. D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
    [Crossref]
  10. J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
    [Crossref]
  11. L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
    [Crossref]
  12. H. Xu, S. M. Anlage, L. Hu, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 183119 (2007).
    [Crossref]
  13. M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
    [Crossref]
  14. Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance,” Nanoscale 8(37), 16684–16693 (2016).
    [Crossref]
  15. T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
    [Crossref]
  16. Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
    [Crossref]
  17. Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
    [Crossref]
  18. S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano 4(5), 2713–2720 (2010).
    [Crossref]
  19. H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
    [Crossref]
  20. S. Shen, S.-Y. Chen, D.-Y. Zhang, and Y.-H. Liu, “High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices,” Opt. Express 26(21), 27545–27554 (2018).
    [Crossref]
  21. Z.-Y. Jiang, W. Huang, L.-S. Chen, and Y.-H. Liu, “Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding,” Opt. Express 27(17), 24194–24206 (2019).
    [Crossref]
  22. S. K. Vishwanath, D.-G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys. 53(5S3), 05HB11 (2014).
    [Crossref]
  23. S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
    [Crossref]
  24. P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
    [Crossref]
  25. S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
    [Crossref]
  26. C. A. Klein, “Microwave shielding effectiveness of EC-coated dielectric slabs,” IEEE Trans. Microwave Theory Tech. 38(3), 321–324 (1990).
    [Crossref]
  27. Y. Liu and J. Tan, “Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings,” Prog. Electromagn. Res. 140, 353–368 (2013).
    [Crossref]
  28. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
    [Crossref]
  29. M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
    [Crossref]
  30. P. G. Glöersen, “Ion− beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).
    [Crossref]
  31. Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
    [Crossref]
  32. H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
    [Crossref]
  33. S.-I. Chung, P. K. Kim, T.-G. Ha, and J. T. Han, “High-performance flexible transparent nanomesh electrodes,” Nanotechnology 30(12), 125301 (2019).
    [Crossref]
  34. X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
    [Crossref]
  35. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel images. I. Plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55(4), 373–381 (1965).
    [Crossref]
  36. Z. Lu, H. Wang, J. Tan, L. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
    [Crossref]
  37. I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
    [Crossref]
  38. J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
    [Crossref]
  39. J. Tan and Z. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express 15(3), 790–796 (2007).
    [Crossref]
  40. X. Ma, M. Pu, X. Li, Y. Guo, and X. Luo, “All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,” Opto-Electro. Advan. 2(3), 18002301–18002306 (2019).
    [Crossref]
  41. Y. Wang, X. Ma, X. Li, M. Pu, and X. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electro. Advan. 1(8), 18001301–18001306 (2018).
    [Crossref]
  42. M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–926 (1993).
    [Crossref]
  43. T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24(9), 2880–2890 (2007).
    [Crossref]
  44. X. Luo, “Subwavelength artificial structures: opening a new era for engineering optics,” Adv. Mater. 31(4), 1804680 (2019).
    [Crossref]
  45. P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
    [Crossref]

2020 (1)

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

2019 (4)

X. Ma, M. Pu, X. Li, Y. Guo, and X. Luo, “All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,” Opto-Electro. Advan. 2(3), 18002301–18002306 (2019).
[Crossref]

X. Luo, “Subwavelength artificial structures: opening a new era for engineering optics,” Adv. Mater. 31(4), 1804680 (2019).
[Crossref]

Z.-Y. Jiang, W. Huang, L.-S. Chen, and Y.-H. Liu, “Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding,” Opt. Express 27(17), 24194–24206 (2019).
[Crossref]

S.-I. Chung, P. K. Kim, T.-G. Ha, and J. T. Han, “High-performance flexible transparent nanomesh electrodes,” Nanotechnology 30(12), 125301 (2019).
[Crossref]

2018 (3)

S. Shen, S.-Y. Chen, D.-Y. Zhang, and Y.-H. Liu, “High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices,” Opt. Express 26(21), 27545–27554 (2018).
[Crossref]

L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Y. Wang, X. Ma, X. Li, M. Pu, and X. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electro. Advan. 1(8), 18001301–18001306 (2018).
[Crossref]

2017 (4)

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref]

2016 (5)

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance,” Nanoscale 8(37), 16684–16693 (2016).
[Crossref]

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

Z. Lu, H. Wang, J. Tan, L. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

2015 (3)

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

2014 (4)

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

S. K. Vishwanath, D.-G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys. 53(5S3), 05HB11 (2014).
[Crossref]

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

2013 (4)

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Y. Liu and J. Tan, “Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings,” Prog. Electromagn. Res. 140, 353–368 (2013).
[Crossref]

2012 (1)

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

2011 (1)

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

2010 (2)

S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano 4(5), 2713–2720 (2010).
[Crossref]

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

2009 (2)

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

2008 (1)

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

2007 (3)

2006 (2)

H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, “Selective metal pattern formation and its EMI shielding efficiency,” Appl. Surf. Sci. 252(8), 2665–2672 (2006).
[Crossref]

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

1993 (1)

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–926 (1993).
[Crossref]

1990 (1)

C. A. Klein, “Microwave shielding effectiveness of EC-coated dielectric slabs,” IEEE Trans. Microwave Theory Tech. 38(3), 321–324 (1990).
[Crossref]

1975 (1)

P. G. Glöersen, “Ion− beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).
[Crossref]

1965 (1)

Al-Saleh, M. H.

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

An, C. J.

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Anlage, S. M.

H. Xu, S. M. Anlage, L. Hu, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 183119 (2007).
[Crossref]

Bora, V.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Carney, T. J.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Cha, J. J.

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

Chapman, J. E.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–926 (1993).
[Crossref]

Chase, R. C.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–926 (1993).
[Crossref]

Chen, L.-S.

Chen, S.-Y.

Chen, Y.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Chen, Z.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Cho, C.

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Cho, H.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Cho, K. M.

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Cho, S.-H.

H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, “Selective metal pattern formation and its EMI shielding efficiency,” Appl. Surf. Sci. 252(8), 2665–2672 (2006).
[Crossref]

Choi, D.-G.

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Chung, S.-I.

S.-I. Chung, P. K. Kim, T.-G. Ha, and J. T. Han, “High-performance flexible transparent nanomesh electrodes,” Nanotechnology 30(12), 125301 (2019).
[Crossref]

Coleman, J. N.

S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano 4(5), 2713–2720 (2010).
[Crossref]

Cui, Y.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

De, S.

S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano 4(5), 2713–2720 (2010).
[Crossref]

Densmore, V.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Ding, X.

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance,” Nanoscale 8(37), 16684–16693 (2016).
[Crossref]

Dong, Y.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Du, F.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Eklund, P. C.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Fan, S.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Fu, H.

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Gao, H.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Gao, J.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Gao, P.

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

Gao, T.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Glöersen, P. G.

P. G. Glöersen, “Ion− beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).
[Crossref]

Griffin, A.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Gruner, G.

H. Xu, S. M. Anlage, L. Hu, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 183119 (2007).
[Crossref]

Guo, Y.

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

X. Ma, M. Pu, X. Li, Y. Guo, and X. Luo, “All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,” Opto-Electro. Advan. 2(3), 18002301–18002306 (2019).
[Crossref]

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Ha, I.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Ha, T.-G.

S.-I. Chung, P. K. Kim, T.-G. Ha, and J. T. Han, “High-performance flexible transparent nanomesh electrodes,” Nanotechnology 30(12), 125301 (2019).
[Crossref]

Halman, J. I.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Han, J.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Han, J. T.

S.-I. Chung, P. K. Kim, T.-G. Ha, and J. T. Han, “High-performance flexible transparent nanomesh electrodes,” Nanotechnology 30(12), 125301 (2019).
[Crossref]

Han, L.

Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Han, Y.

Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

He, X.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Hibbard, D. L.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Hong, S.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Hsu, P.-C.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Hu, L.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

H. Xu, S. M. Anlage, L. Hu, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 183119 (2007).
[Crossref]

Hu, M.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Hu, P.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Huang, P.-S.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Huang, W.

Huang, Y.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Jang, S.

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Jang, W.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Jeon, H.-J.

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Jeong, J.-H.

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Jia, L.-C.

L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Jiang, Z.-Y.

Jin, M. L.

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Jin, P.

Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Jin, S.-H.

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Jo, J.

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Jung, J.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Jung, W.-B.

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Kerwien, N.

Kim, C.

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Kim, C. S.

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Kim, D.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Kim, D. Y.

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Kim, D.-G.

S. K. Vishwanath, D.-G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys. 53(5S3), 05HB11 (2014).
[Crossref]

Kim, D.-H.

D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Kim, G.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Kim, H.-J.

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Kim, J.

S. K. Vishwanath, D.-G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys. 53(5S3), 05HB11 (2014).
[Crossref]

Kim, J.-W.

D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

Kim, J.-Y.

H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, “Selective metal pattern formation and its EMI shielding efficiency,” Appl. Surf. Sci. 252(8), 2665–2672 (2006).
[Crossref]

Kim, K. K.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Kim, M.-G.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Kim, P. K.

S.-I. Chung, P. K. Kim, T.-G. Ha, and J. T. Han, “High-performance flexible transparent nanomesh electrodes,” Nanotechnology 30(12), 125301 (2019).
[Crossref]

Kim, S.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Kim, S. S.

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Kim, Y.

D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Kim, Y. C.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Klein, C. A.

C. A. Klein, “Microwave shielding effectiveness of EC-coated dielectric slabs,” IEEE Trans. Microwave Theory Tech. 38(3), 321–324 (1990).
[Crossref]

Ko, S. H.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Kohin, M.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–926 (1993).
[Crossref]

Kong, D.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

Kwon, J.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Lee, H.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Lee, H. R.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

Lee, H.-C.

H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, “Selective metal pattern formation and its EMI shielding efficiency,” Appl. Surf. Sci. 252(8), 2665–2672 (2006).
[Crossref]

Lee, J.-H.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Lee, J.-K.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Lee, J.-Y.

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Lee, P.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Lee, S.-G.

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Lee, Y.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Leu, P. W.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Li, F.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Li, K.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Li, N.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Li, R. K.-Y.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Li, X.

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

X. Ma, M. Pu, X. Li, Y. Guo, and X. Luo, “All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,” Opto-Electro. Advan. 2(3), 18002301–18002306 (2019).
[Crossref]

Y. Wang, X. Ma, X. Li, M. Pu, and X. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electro. Advan. 1(8), 18001301–18001306 (2018).
[Crossref]

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Li, Z.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Li, Z.-M.

L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Lin, J.

Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Lin, S.

Lin, X.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

Liu, H.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Liu, K.

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Liu, X.

L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Liu, Y.

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref]

Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Y. Liu and J. Tan, “Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings,” Prog. Electromagn. Res. 140, 353–368 (2013).
[Crossref]

Liu, Y.-H.

Lu, Z.

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance,” Nanoscale 8(37), 16684–16693 (2016).
[Crossref]

Z. Lu, H. Wang, J. Tan, L. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

J. Tan and Z. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express 15(3), 790–796 (2007).
[Crossref]

Luo, X.

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

X. Ma, M. Pu, X. Li, Y. Guo, and X. Luo, “All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,” Opto-Electro. Advan. 2(3), 18002301–18002306 (2019).
[Crossref]

X. Luo, “Subwavelength artificial structures: opening a new era for engineering optics,” Adv. Mater. 31(4), 1804680 (2019).
[Crossref]

Y. Wang, X. Ma, X. Li, M. Pu, and X. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electro. Advan. 1(8), 18001301–18001306 (2018).
[Crossref]

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Ma, L.

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance,” Nanoscale 8(37), 16684–16693 (2016).
[Crossref]

Z. Lu, H. Wang, J. Tan, L. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

Ma, R.

L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Ma, X.

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

X. Ma, M. Pu, X. Li, Y. Guo, and X. Luo, “All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,” Opto-Electro. Advan. 2(3), 18002301–18002306 (2019).
[Crossref]

Y. Wang, X. Ma, X. Li, M. Pu, and X. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electro. Advan. 1(8), 18001301–18001306 (2018).
[Crossref]

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Ma, Y.

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

McDonough, J. R.

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

McGehee, M. D.

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

Milster, T. D.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Murray, I. B.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Na, S. I.

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Narasimhan, V. K.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

Noh, C.-H.

H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, “Selective metal pattern formation and its EMI shielding efficiency,” Appl. Surf. Sci. 252(8), 2665–2672 (2006).
[Crossref]

Oh, J.-S.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Osten, W.

Parobek, D.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Pieratt, M. W.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Pu, M.

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

X. Ma, M. Pu, X. Li, Y. Guo, and X. Luo, “All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,” Opto-Electro. Advan. 2(3), 18002301–18002306 (2019).
[Crossref]

Y. Wang, X. Ma, X. Li, M. Pu, and X. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electro. Advan. 1(8), 18001301–18001306 (2018).
[Crossref]

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Qiu, Y.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Rafler, S.

Ramsey, K. A.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Rathmell, A. R.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Rowell, M. W.

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

Ruan, Z.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Ruoff, J.

Schuster, T.

Seo, H. W.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Shan, G.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Shen, B.

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Shen, S.

Shenoy, G. J.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Song, K. Y.

H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, “Selective metal pattern formation and its EMI shielding efficiency,” Appl. Surf. Sci. 252(8), 2665–2672 (2006).
[Crossref]

Song, M.

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

Stewart, I. E.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Sundararaj, U.

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

Tan, J.

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

Z. Lu, H. Wang, J. Tan, L. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance,” Nanoscale 8(37), 16684–16693 (2016).
[Crossref]

Y. Liu and J. Tan, “Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings,” Prog. Electromagn. Res. 140, 353–368 (2013).
[Crossref]

J. Tan and Z. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express 15(3), 790–796 (2007).
[Crossref]

Tan, S.

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

Thomas, M.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Traylor, J. D.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–926 (1993).
[Crossref]

Vishwanath, S. K.

S. K. Vishwanath, D.-G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys. 53(5S3), 05HB11 (2014).
[Crossref]

Wang, C.

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

Wang, H.

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

Z. Lu, H. Wang, J. Tan, L. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance,” Nanoscale 8(37), 16684–16693 (2016).
[Crossref]

Wang, M.

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

Wang, S.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Wang, X.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Wang, Y.

Y. Wang, X. Ma, X. Li, M. Pu, and X. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electro. Advan. 1(8), 18001301–18001306 (2018).
[Crossref]

Wein, S. J.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–926 (1993).
[Crossref]

Wiley, B. J.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Winthrop, J. T.

Won, P.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Worthington, C. R.

Wu, H.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

Wu, H.-Y.

L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Xie, X.

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Xu, H.

H. Xu, S. M. Anlage, L. Hu, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 183119 (2007).
[Crossref]

Yan, D.-X.

L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Yang, S.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Yang, Y.

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

Ye, S.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Yeo, J.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Yu, Z.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Zhai, W.

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Zhang, D.-Y.

Zhang, F.

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Zhao, Z.

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

Zheng, W.

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Zhu, J.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

2D Mater. (1)

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (3)

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref]

ACS Nano (3)

S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano 4(5), 2713–2720 (2010).
[Crossref]

T. Gao, Z. Li, P.-S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J.-K. Lee, H. Liu, and P. W. Leu, “Hierarchical graphene/metal grid structures for stable, flexible transparent conductors,” ACS Nano 9(5), 5440–5446 (2015).
[Crossref]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref]

Adv. Funct. Mater. (1)

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Adv. Mater. (3)

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

X. Luo, “Subwavelength artificial structures: opening a new era for engineering optics,” Adv. Mater. 31(4), 1804680 (2019).
[Crossref]

Appl. Phys. Lett. (1)

H. Xu, S. M. Anlage, L. Hu, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 183119 (2007).
[Crossref]

Appl. Surf. Sci. (1)

H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, “Selective metal pattern formation and its EMI shielding efficiency,” Appl. Surf. Sci. 252(8), 2665–2672 (2006).
[Crossref]

Carbon (3)

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

C. A. Klein, “Microwave shielding effectiveness of EC-coated dielectric slabs,” IEEE Trans. Microwave Theory Tech. 38(3), 321–324 (1990).
[Crossref]

J. Mater. Chem. A (1)

M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, and D.-H. Kim, “ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes,” J. Mater. Chem. A 3(1), 65–70 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. (1)

P. G. Glöersen, “Ion− beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. K. Vishwanath, D.-G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys. 53(5S3), 05HB11 (2014).
[Crossref]

Langmuir (1)

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K.-Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Mater. Des. (1)

D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

Nano Lett. (2)

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref]

H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10(10), 4242–4248 (2010).
[Crossref]

Nanoscale (3)

S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.-J. Jeon, and S. H. Ko, “A three-dimensional metal grid mesh as a practical alternative to ITO,” Nanoscale 8(29), 14257–14263 (2016).
[Crossref]

Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, “Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance,” Nanoscale 8(37), 16684–16693 (2016).
[Crossref]

P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao, and X. Luo, “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale 12, 2415–2421 (2020).
[Crossref]

Nanotechnology (1)

S.-I. Chung, P. K. Kim, T.-G. Ha, and J. T. Han, “High-performance flexible transparent nanomesh electrodes,” Nanotechnology 30(12), 125301 (2019).
[Crossref]

Nat. Commun. (1)

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4(1), 2522 (2013).
[Crossref]

Nat. Nanotechnol. (1)

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Opt. Eng. (1)

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–926 (1993).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opto-Electro. Advan. (2)

X. Ma, M. Pu, X. Li, Y. Guo, and X. Luo, “All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,” Opto-Electro. Advan. 2(3), 18002301–18002306 (2019).
[Crossref]

Y. Wang, X. Ma, X. Li, M. Pu, and X. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electro. Advan. 1(8), 18001301–18001306 (2018).
[Crossref]

Proc. SPIE (2)

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Prog. Electromagn. Res. (1)

Y. Liu and J. Tan, “Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings,” Prog. Electromagn. Res. 140, 353–368 (2013).
[Crossref]

Sci. Rep. (1)

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Other (1)

X. Xie, K. Liu, M. Pu, X. Ma, X. Li, Y. Guo, F. Zhang, and X. Luo, “All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation,” Nanophotonics (2019), .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of (a) the metallic nanomesh and (b) its unit cell with geometric parameters, where p and w denote the pitch and width.
Fig. 2.
Fig. 2. (a) Flow chart of the fabricating process. (b) and (c) Photographs of the round sample with a diameter of 100 mm and doughnut-shape sample with an outer and inner diameter of 7 mm and 3 mm respectively. (d) and (e) Scanning electron microscopy images of the fabricated metallic nanomesh and the junction of nanowires.
Fig. 3.
Fig. 3. Schematic illustration of the measurement configurations: (a) waveguide-to-coaxial adapters apparatus for measurement in 500 MHz-18 GHz and (b) lens antennas apparatus for 18-40 GHz, where the doughnut-shape and round samples were adopted to apparatuses (a) and (b), respectively.
Fig. 4.
Fig. 4. Experimental and simulative results: (a) EMI SE in the range of 0.5-40 GHz, covering the microwave regions from L to the Ka band. (b) Optical transmittance in the VIS and NIR spectra from 400 to 1800 nm where the calculation is based on Eq. (1).
Fig. 5.
Fig. 5. EMI shielding and optical properties of different materials and structures.
Fig. 6.
Fig. 6. Simulated performance of the metallic meshes: (a) EMI SE with different w and p, where they keep the same ratio of 1/12. (b) EMI SE and calculated transmittance through Eq. (1) with various w where p is fixed to 12 µm. (c)–(f) Diffraction distributions by transmitting a monochromatic light through the metallic mesh with different w, with p being fixed to 12 µm, where (c) shows the diffraction pattern with w of 2 µm and (d)–(f) present the logarithmic normalized diffraction energies distributions where the black dotted lines indicate the maximal high-order diffractive energies.
Fig. 7.
Fig. 7. Simulated angular results of nanomesh with w of 850 nm and p of 12 µm: (a) and (b) for EMI SE by CST while (c) and (d) for optical transmittance by RCWA at incident angles changing from 0° to 60° under TE and TM polarizations, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = ( 1 w / p ) 2 × 100 %
SE ( dB ) = 10 log 10 ( P t / P i )

Metrics