Abstract

High-intensity laser-irradiated metal spheres in glass move toward a light source while leaving the doping metal in their trajectories. A method for controlling the trajectory length, which can be used to produce new optical devices in glass, has not been proposed yet. In-situ observations clarified the relationship, wherein the trajectory length increased with the increasing laser power and irradiation duration; the maximum and minimum being 2.0 and 0.1 mm, respectively. Microscopic observations, elemental analysis, and counting the number of metal particles revealed that the maximum speed metal sphere generated the most metal-containing area with the highest number of metal particles.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Clarification of fast metal sphere movement in glass

Nobuyasu Nishioka, Hirofumi Hidai, Souta Matsusaka, Akira Chiba, and Noboru Morita
Opt. Express 27(13) 18988-19001 (2019)

Laser-induced nickel sphere migration and nanoparticle precipitation in silica glass

Hirofumi Hidai, Makoto Matsushita, Souta Matsusaka, Chiba Akira, and Noboru Morita
Opt. Mater. Express 5(5) 1006-1015 (2015)

Relationship between glass structure and spectroscopic properties in Er3+/Yb3+/Al3+/P5+-doped silica glasses

Chongyun Shao, Fan Wang, Yan Jiao, Shikai Wang, Xin Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 10(5) 1169-1181 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. Ellison and I. A. Cornejo, “Glass Substrates for Liquid Crystal Displays,” Int. J. Appl. Glas. Sci. 1(1), 87–103 (2010).
    [Crossref]
  2. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15(4), 106–108 (1979).
    [Crossref]
  3. N. Singh, K. J. Singh, K. Singh, and H. Singh, “Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 225(3), 305–309 (2004).
    [Crossref]
  4. L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
    [Crossref]
  5. W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
    [Crossref]
  6. J. A. Der Au, D. Kopf, M. Moser, and U. Keller, “60-fs pulses from a diode-pumped Nd: glass laser,” Opt. Lett. 22(5), 307–309 (1997).
    [Crossref]
  7. R. K. Jain and R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glasses,” J. Opt. Soc. Am. 73(5), 647–653 (1983).
    [Crossref]
  8. A. V. Kolobov and J. Tominaga, “Chalcogenide glasses as prospective materials for optical memories and optical data storage,” J. Mater. Sci.: Mater. Electron. 14(10/12), 677–680 (2003).
    [Crossref]
  9. R. Electrical, “Reversible Electrical Switching Phenomena in Disordered Structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
    [Crossref]
  10. H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
    [Crossref]
  11. H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
    [Crossref]
  12. N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Clarification of fast metal sphere movement in glass,” Opt. Express 27(13), 18988–19001 (2019).
    [Crossref]
  13. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17(15), 12269–12278 (2009).
    [Crossref]
  14. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
    [Crossref]
  15. S. I. Todoroki, “In-situ observation of fiber-fuse propagation,” Jpn. J. Appl. Phys. 44(6A), 4022–4024 (2005).
    [Crossref]
  16. E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
    [Crossref]
  17. Y. Shuto, S. Yanagi, and S. Asakawa, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
    [Crossref]
  18. H. Soejima (1979). Spatial resolving power of electron prove X-ray microanalyzer (Doctoral dissertation)[in Japanese]. Retrieved from http://hdl.handle.net/11094/405

2019 (1)

2016 (1)

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref]

2015 (1)

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

2010 (2)

2009 (1)

2006 (2)

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
[Crossref]

2005 (1)

S. I. Todoroki, “In-situ observation of fiber-fuse propagation,” Jpn. J. Appl. Phys. 44(6A), 4022–4024 (2005).
[Crossref]

2004 (2)

Y. Shuto, S. Yanagi, and S. Asakawa, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

N. Singh, K. J. Singh, K. Singh, and H. Singh, “Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 225(3), 305–309 (2004).
[Crossref]

2003 (1)

A. V. Kolobov and J. Tominaga, “Chalcogenide glasses as prospective materials for optical memories and optical data storage,” J. Mater. Sci.: Mater. Electron. 14(10/12), 677–680 (2003).
[Crossref]

2002 (1)

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
[Crossref]

1997 (1)

1983 (1)

1979 (1)

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

1968 (1)

R. Electrical, “Reversible Electrical Switching Phenomena in Disordered Structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[Crossref]

Ahmad, M. M.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
[Crossref]

Asakawa, S.

Y. Shuto, S. Yanagi, and S. Asakawa, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

Bufetov, I. A.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Chiba, A.

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Clarification of fast metal sphere movement in glass,” Opt. Express 27(13), 18988–19001 (2019).
[Crossref]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref]

Clapp, T. V.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
[Crossref]

Cornejo, I. A.

A. Ellison and I. A. Cornejo, “Glass Substrates for Liquid Crystal Displays,” Int. J. Appl. Glas. Sci. 1(1), 87–103 (2010).
[Crossref]

Der Au, J. A.

Dianov, E. M.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Efremov, V. P.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Electrical, R.

R. Electrical, “Reversible Electrical Switching Phenomena in Disordered Structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[Crossref]

Ellison, A.

A. Ellison and I. A. Cornejo, “Glass Substrates for Liquid Crystal Displays,” Int. J. Appl. Glas. Sci. 1(1), 87–103 (2010).
[Crossref]

Fortov, V. E.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Frolov, A. A.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Gräfe, M.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Gross, S.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Heilmann, R.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Hidai, H.

Hiromatsu, K.

Hosaka, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Huang, W.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
[Crossref]

Itoh, S.

Iwamoto, T.

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref]

Jain, R. K.

Jensen, L.

Jupé, M.

Keller, U.

Kishi, T.

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref]

Kolobov, A. V.

A. V. Kolobov and J. Tominaga, “Chalcogenide glasses as prospective materials for optical memories and optical data storage,” J. Mater. Sci.: Mater. Electron. 14(10/12), 677–680 (2003).
[Crossref]

Kopf, D.

Kulish, M. I.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Lind, R. C.

Liz-Marzán, L. M.

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
[Crossref]

Matsusaka, S.

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Clarification of fast metal sphere movement in glass,” Opt. Express 27(13), 18988–19001 (2019).
[Crossref]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref]

Meany, T.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Melkumov, M. A.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Melninkaitis, A.

Miya, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Miyashita, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Morita, N.

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Clarification of fast metal sphere movement in glass,” Opt. Express 27(13), 18988–19001 (2019).
[Crossref]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref]

Moser, M.

Nishioka, N.

Ojha, S. M.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
[Crossref]

Perez-Leija, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Rakitin, A. E.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Ristau, D.

Shuto, Y.

Y. Shuto, S. Yanagi, and S. Asakawa, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

Singh, H.

N. Singh, K. J. Singh, K. Singh, and H. Singh, “Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 225(3), 305–309 (2004).
[Crossref]

Singh, K.

N. Singh, K. J. Singh, K. Singh, and H. Singh, “Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 225(3), 305–309 (2004).
[Crossref]

Singh, K. J.

N. Singh, K. J. Singh, K. Singh, and H. Singh, “Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 225(3), 305–309 (2004).
[Crossref]

Singh, N.

N. Singh, K. J. Singh, K. Singh, and H. Singh, “Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 225(3), 305–309 (2004).
[Crossref]

Sirutkaitis, V.

Soejima, H.

H. Soejima (1979). Spatial resolving power of electron prove X-ray microanalyzer (Doctoral dissertation)[in Japanese]. Retrieved from http://hdl.handle.net/11094/405

Steel, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Syms, R. R. A.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
[Crossref]

Szameit, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Terunuma, Y.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Todoroki, S. I.

S. I. Todoroki, “In-situ observation of fiber-fuse propagation,” Jpn. J. Appl. Phys. 44(6A), 4022–4024 (2005).
[Crossref]

Tokura, H.

Tominaga, J.

A. V. Kolobov and J. Tominaga, “Chalcogenide glasses as prospective materials for optical memories and optical data storage,” J. Mater. Sci.: Mater. Electron. 14(10/12), 677–680 (2003).
[Crossref]

Wada, J.

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref]

Withford, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Yamazaki, T.

Yanagi, S.

Y. Shuto, S. Yanagi, and S. Asakawa, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

Yeatman, E. M.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
[Crossref]

Electron. Lett. (1)

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Shuto, S. Yanagi, and S. Asakawa, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, “Fiber-Device-Fiber Gain From a Sol-Gel Erbium-Doped Waveguide Amplifier,” IEEE Photonics Technol. Lett. 14(7), 959–961 (2002).
[Crossref]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fiberss,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Int. J. Appl. Glas. Sci. (1)

A. Ellison and I. A. Cornejo, “Glass Substrates for Liquid Crystal Displays,” Int. J. Appl. Glas. Sci. 1(1), 87–103 (2010).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

A. V. Kolobov and J. Tominaga, “Chalcogenide glasses as prospective materials for optical memories and optical data storage,” J. Mater. Sci.: Mater. Electron. 14(10/12), 677–680 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

S. I. Todoroki, “In-situ observation of fiber-fuse propagation,” Jpn. J. Appl. Phys. 44(6A), 4022–4024 (2005).
[Crossref]

Langmuir (1)

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
[Crossref]

Laser Photonics Rev. (1)

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

N. Singh, K. J. Singh, K. Singh, and H. Singh, “Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 225(3), 305–309 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. Electrical, “Reversible Electrical Switching Phenomena in Disordered Structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[Crossref]

Sci. Rep. (1)

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref]

Other (1)

H. Soejima (1979). Spatial resolving power of electron prove X-ray microanalyzer (Doctoral dissertation)[in Japanese]. Retrieved from http://hdl.handle.net/11094/405

Supplementary Material (1)

NameDescription
» Visualization 1       Metal sphere moving in glass with laser illumination as shown in Fig. 4; First half is the fast movement at P = 13 W and the latter half is a separation from the trajectory at P = 7 W.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Transmitted optical images of fast movement metal spheres with changing laser power P: (1) P = 9 W, (2) P = 11 W, (3) P = 13 W. Time lapse images show each laser illumination time t: (a) t = 0 ms (before laser illumination), (b) t = 40 ms, (c) t = 100 ms (just after laser illumination).
Fig. 2.
Fig. 2. Relationship between power P and trajectory length L.
Fig. 3.
Fig. 3. Relationship between power P and metal sphere volume change ΔV.
Fig. 4.
Fig. 4. Metal sphere removal process from the fast movement trajectory.
Fig. 5.
Fig. 5. Time-lapse images of fast movement with limited laser irradiation time for P = 9 W, 11 W, and 13 W.
Fig. 6.
Fig. 6. Relationship between laser illumination time τ and trajectory length L.
Fig. 7.
Fig. 7. Transmitted optical micrographs (a) and SEM micrographs (b-f) of fast movement trajectories for 9 W (1) and 13 W (2).
Fig. 8.
Fig. 8. Transmitted optical micrograph (a) and SEM (b) micrographs of slow movement of 7 W.
Fig. 9.
Fig. 9. SEM micrograph (a), line analysis (b), velocity change of a metal sphere (c), and heat input change to a metal sphere (d) of fast movement trajectory for (1) 9 W and (2) 13 W.
Fig. 10.
Fig. 10. SEM micrographs and binarization images of fast movement trajectory for (1) 9 W and (2) 13 W: (a) head part, (b) belly part, (c) tail part.
Fig. 11.
Fig. 11. Relationship between position in the fast movement trajectory, number of metal particles N, average particle diameter φ, and metal area S calculated by binarization of images from Fig. 10.

Metrics