Abstract

The efficiency and the stability of As2S3 microstructured optical fibres (MOFs) are limited by the shift of their optical properties that occurs over time due to a naturally induced aging process. Such sensitivity becomes more crucial for long optical path. Among the variety of fibre designs, the MOFs are developed for promising photonics applications such as supercontinuum generation for example. In the present work, we carried out an extensive aging study on As2S3 chalcogenide MOFs in ambient atmosphere. The evolution of the fibre transmission spectrum has been studied with regards to exposure time. The analysis of the transmission line profile was performed in terms of different spectral components Gaussian in shape and the infrared absorption bands have been attributed to the corresponding chemical groups' vibration modes or overtones. The time-dependent evolution of fibre attenuation has been studied as well as its longitudinal evolution for a given exposure time. Previous knowledge of extinction coefficient inherent to vibration components allows to predict their corresponding concentration. The content of hydroxyl groups tightly bonded to the glass network of the sulphide MOF core decreases exponentially with distance away from the MOF extremity. The report results show that a deleterious aging effect occurs over the first hours and days of exposure. This have crucial implications for storage and employment techniques and requires holes airproofing technique.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation

O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J-C Jules, O. Heintz, E. Lesniewska, and F. Smektala
Opt. Express 22(20) 23912-23919 (2014)

Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala
Opt. Express 18(25) 26655-26665 (2010)

Nonlinear optical waveguides in As2S3-Ag2S chalcogenide glass thin films

J. M. P. Almeida, E. C. Barbano, C. B. Arnold, L. Misoguti, and C. R. Mendonça
Opt. Mater. Express 7(1) 93-99 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Kohl-Landgraf, J.-E. Nimsch, and J. Wachtveitl, “LiF, an underestimated supercontinuum source in femtosecond transient absorption spectroscopy,” Opt. Express 21(14), 17060–17065 (2013).
    [Crossref] [PubMed]
  2. S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
    [Crossref]
  3. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  4. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
    [Crossref]
  5. P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7, 1759–1764 (2005).
  6. R. Y. Golovchak, A. Kozdras, and O. I. Shpotyuk, “Physical ageing in glassy As-Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
    [Crossref]
  7. J. S. Berkes and S. W. Ing Jr., andW. J. Hillegas, “Photodecomposition of Amorphous As2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).
  8. F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
    [Crossref]
  9. Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles, “Durability of an As2S3 chalcogenide glass: Optical properties and dissolution kinetics,” J. Non-Cryst. Solids 357(3), 932–938 (2011).
    [Crossref]
  10. Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
    [Crossref]
  11. M. M. Smedskjaer, Y. Yue, J. Deubener, H. P. Gunnlaugsson, and S. Marup, “Modifying glass surfaces via internal diffusion,” J. Non-Cryst. Solids 356(6-8), 290–298 (2010).
    [Crossref]
  12. M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
    [Crossref]
  13. R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
    [Crossref]
  14. P. Toupin, L. Brilland, D. Mechin, J. Adam, and J. Troles, “Optical aging of chalcogenide microstructured optical fibers,” J. Lightwave Technol. 32(13), 2428–2432 (2014).
    [Crossref]
  15. R. J. Curry, S. W. Birtwell, A. K. Mairaj, X. Feng, and D. W. Hewak, “A study of environmental effects on the attenuation of chalcogenide optical fibre,” J. Non-Cryst. Solids 351(6-7), 477–481 (2005).
    [Crossref]
  16. O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J.-C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22(20), 23912–23919 (2014).
    [Crossref]
  17. V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
    [Crossref]
  18. V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
    [Crossref]
  19. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
    [Crossref] [PubMed]
  20. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
    [Crossref] [PubMed]
  21. O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
    [Crossref] [PubMed]
  22. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
    [Crossref] [PubMed]
  23. D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
    [Crossref]
  24. D. M. Kane, R. J. Chater, D. B. Gore, and D. S. McPhail, “Corrosion at the surface of chalcogenide glass microspheres,” J. Opt. 14(5), 055401 (2012).
    [Crossref]
  25. S. Hendy, “Light scattering in transparent glass ceramics,” Appl. Phys. Lett. 81(7), 1171–1173 (2002).
    [Crossref]
  26. V. Kokorina, Glasses for Infrared Optics (The CRC Press, 1996).
  27. A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).
  28. M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).
  29. B. Frumarová, P. Nemec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sb-S: NdCl3 glasses,” Semiconductors 32(8), 812–816 (1998).
    [Crossref]
  30. T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, and J. Swiatek, “On the compositional trends in IR impurity absorption of Ge–As(Sb)–S glasses,” J. Optoelectron. Adv. Mater. 6, 1141–1146 (2004).
  31. T. S. Kavetskii, V. D. Pamukchieva, and O. I. Shpotyuk, “Concentration dependence of impurity absorption in chalcogenide glasses of the Ge-Sb-S system,” J. Appl. Spectrosc. 67(4), 687–692 (2000).
    [Crossref]
  32. C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
    [Crossref]
  33. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Transmission loss characteristics of As40S60 and As38Ge5Se57 glass unclad fibers,” J. Non-Cryst. Solids 69(2-3), 231–242 (1985).
    [Crossref]
  34. T. S. Kavetskyy, A. P. Kovalskiy, V. D. Pamukchieva, and O. I. Shpotyuk, “IR impurity absorption in Sb2S3-GeS2(Ge2S3) chalcogenide glasses,” Infrared Phys. Technol. 41(1), 41–45 (2000).
    [Crossref]
  35. G. Navarra, I. Iliopoulos, V. Militello, S. G. Rotolo, and M. Leone, “OH-related infrared absorption bands in oxide glasses,” J. Non-Cryst. Solids 351(21-23), 1796–1800 (2005).
    [Crossref]
  36. V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
    [Crossref]
  37. E. Stolper, “Water in silicate glasses: An infrared spectroscopic study,” Contrib. Mineral. Petrol. 81(1), 1–17 (1982).
    [Crossref]
  38. J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol. 18(5), 315–321 (2012).
    [Crossref]
  39. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [Crossref]
  40. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
    [Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (4)

D. M. Kane, R. J. Chater, D. B. Gore, and D. S. McPhail, “Corrosion at the surface of chalcogenide glass microspheres,” J. Opt. 14(5), 055401 (2012).
[Crossref]

A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol. 18(5), 315–321 (2012).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref] [PubMed]

2011 (2)

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles, “Durability of an As2S3 chalcogenide glass: Optical properties and dissolution kinetics,” J. Non-Cryst. Solids 357(3), 932–938 (2011).
[Crossref]

2010 (5)

2009 (2)

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

2008 (2)

R. Y. Golovchak, A. Kozdras, and O. I. Shpotyuk, “Physical ageing in glassy As-Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

2007 (1)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

2006 (1)

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

2005 (3)

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7, 1759–1764 (2005).

R. J. Curry, S. W. Birtwell, A. K. Mairaj, X. Feng, and D. W. Hewak, “A study of environmental effects on the attenuation of chalcogenide optical fibre,” J. Non-Cryst. Solids 351(6-7), 477–481 (2005).
[Crossref]

G. Navarra, I. Iliopoulos, V. Militello, S. G. Rotolo, and M. Leone, “OH-related infrared absorption bands in oxide glasses,” J. Non-Cryst. Solids 351(21-23), 1796–1800 (2005).
[Crossref]

2004 (1)

T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, and J. Swiatek, “On the compositional trends in IR impurity absorption of Ge–As(Sb)–S glasses,” J. Optoelectron. Adv. Mater. 6, 1141–1146 (2004).

2002 (4)

S. Hendy, “Light scattering in transparent glass ceramics,” Appl. Phys. Lett. 81(7), 1171–1173 (2002).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

2001 (1)

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

2000 (3)

T. S. Kavetskii, V. D. Pamukchieva, and O. I. Shpotyuk, “Concentration dependence of impurity absorption in chalcogenide glasses of the Ge-Sb-S system,” J. Appl. Spectrosc. 67(4), 687–692 (2000).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

T. S. Kavetskyy, A. P. Kovalskiy, V. D. Pamukchieva, and O. I. Shpotyuk, “IR impurity absorption in Sb2S3-GeS2(Ge2S3) chalcogenide glasses,” Infrared Phys. Technol. 41(1), 41–45 (2000).
[Crossref]

1998 (1)

B. Frumarová, P. Nemec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sb-S: NdCl3 glasses,” Semiconductors 32(8), 812–816 (1998).
[Crossref]

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

1985 (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Transmission loss characteristics of As40S60 and As38Ge5Se57 glass unclad fibers,” J. Non-Cryst. Solids 69(2-3), 231–242 (1985).
[Crossref]

1982 (1)

E. Stolper, “Water in silicate glasses: An infrared spectroscopic study,” Contrib. Mineral. Petrol. 81(1), 1–17 (1982).
[Crossref]

1975 (1)

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

1971 (1)

J. S. Berkes and S. W. Ing Jr., andW. J. Hillegas, “Photodecomposition of Amorphous As2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).

J. S. Berkes and S. W. Ing Jr., andW. J. Hillegas, “Photodecomposition of Amorphous As2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).

Abdelouas, A.

Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles, “Durability of an As2S3 chalcogenide glass: Optical properties and dissolution kinetics,” J. Non-Cryst. Solids 357(3), 932–938 (2011).
[Crossref]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
[Crossref]

Adam, J.

Adam, J. L.

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref] [PubMed]

Aggarwal, I. D.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Allen, P. J.

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7, 1759–1764 (2005).

Amrani, F.

Andriesh, A. M.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

Ania-Castanon, J. D.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Berkes, J. S.

J. S. Berkes and S. W. Ing Jr., andW. J. Hillegas, “Photodecomposition of Amorphous As2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).

Birtwell, S. W.

R. J. Curry, S. W. Birtwell, A. K. Mairaj, X. Feng, and D. W. Hewak, “A study of environmental effects on the attenuation of chalcogenide optical fibre,” J. Non-Cryst. Solids 351(6-7), 477–481 (2005).
[Crossref]

Bony, P. Y.

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Brilland, L.

Bureau, B.

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

Calvez, L.

Canat, G.

Cathelinaud, M.

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

Charpentier, F.

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

Chartier, T.

Chater, R. J.

D. M. Kane, R. J. Chater, D. B. Gore, and D. S. McPhail, “Corrosion at the surface of chalcogenide glass microspheres,” J. Opt. 14(5), 055401 (2012).
[Crossref]

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Cole, B.

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Coulombier, Q.

Curry, R. J.

R. J. Curry, S. W. Birtwell, A. K. Mairaj, X. Feng, and D. W. Hewak, “A study of environmental effects on the attenuation of chalcogenide optical fibre,” J. Non-Cryst. Solids 351(6-7), 477–481 (2005).
[Crossref]

Delaizir, G.

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

Deng, D.

Désévédavy, F.

Deubener, J.

M. M. Smedskjaer, Y. Yue, J. Deubener, H. P. Gunnlaugsson, and S. Marup, “Modifying glass surfaces via internal diffusion,” J. Non-Cryst. Solids 356(6-8), 290–298 (2010).
[Crossref]

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

Duhant, M.

Dussauze, M.

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

El Amraoui, M.

El-Amraoui, M.

Ellingham, T. J.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Fatome, J.

O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J.-C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22(20), 23912–23919 (2014).
[Crossref]

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
[Crossref] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref] [PubMed]

Feng, X.

R. J. Curry, S. W. Birtwell, A. K. Mairaj, X. Feng, and D. W. Hewak, “A study of environmental effects on the attenuation of chalcogenide optical fibre,” J. Non-Cryst. Solids 351(6-7), 477–481 (2005).
[Crossref]

Filipecki, J.

T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, and J. Swiatek, “On the compositional trends in IR impurity absorption of Ge–As(Sb)–S glasses,” J. Optoelectron. Adv. Mater. 6, 1141–1146 (2004).

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Fortier, C.

Franta, D.

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

Frumar, M.

B. Frumarová, P. Nemec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sb-S: NdCl3 glasses,” Semiconductors 32(8), 812–816 (1998).
[Crossref]

Frumarová, B.

B. Frumarová, P. Nemec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sb-S: NdCl3 glasses,” Semiconductors 32(8), 812–816 (1998).
[Crossref]

Furniss, D.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

Gadret, G.

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
[Crossref] [PubMed]

O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J.-C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22(20), 23912–23919 (2014).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref] [PubMed]

Gao, W.

Gerasimenko, V. V.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Golovchak, R.

T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, and J. Swiatek, “On the compositional trends in IR impurity absorption of Ge–As(Sb)–S glasses,” J. Optoelectron. Adv. Mater. 6, 1141–1146 (2004).

Golovchak, R. Y.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

R. Y. Golovchak, A. Kozdras, and O. I. Shpotyuk, “Physical ageing in glassy As-Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

Gore, D. B.

D. M. Kane, R. J. Chater, D. B. Gore, and D. S. McPhail, “Corrosion at the surface of chalcogenide glass microspheres,” J. Opt. 14(5), 055401 (2012).
[Crossref]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Gubanova, A. A.

A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).

Guin, J.-P.

Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles, “Durability of an As2S3 chalcogenide glass: Optical properties and dissolution kinetics,” J. Non-Cryst. Solids 357(3), 932–938 (2011).
[Crossref]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
[Crossref]

Gunnlaugsson, H. P.

M. M. Smedskjaer, Y. Yue, J. Deubener, H. P. Gunnlaugsson, and S. Marup, “Modifying glass surfaces via internal diffusion,” J. Non-Cryst. Solids 356(6-8), 290–298 (2010).
[Crossref]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Heintz, O.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hendy, S.

S. Hendy, “Light scattering in transparent glass ceramics,” Appl. Phys. Lett. 81(7), 1171–1173 (2002).
[Crossref]

Hewak, D. W.

R. J. Curry, S. W. Birtwell, A. K. Mairaj, X. Feng, and D. W. Hewak, “A study of environmental effects on the attenuation of chalcogenide optical fibre,” J. Non-Cryst. Solids 351(6-7), 477–481 (2005).
[Crossref]

Hillegas, W. J.

J. S. Berkes and S. W. Ing Jr., andW. J. Hillegas, “Photodecomposition of Amorphous As2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Howard, R. E.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Iliopoulos, I.

G. Navarra, I. Iliopoulos, V. Militello, S. G. Rotolo, and M. Leone, “OH-related infrared absorption bands in oxide glasses,” J. Non-Cryst. Solids 351(21-23), 1796–1800 (2005).
[Crossref]

Ing, S. W.

J. S. Berkes and S. W. Ing Jr., andW. J. Hillegas, “Photodecomposition of Amorphous As2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).

Iovu, M. S.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

Jarek, O.

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

Johnson, B. R.

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7, 1759–1764 (2005).

Jules, J. C.

Jules, J.-C.

Kamitsos, E. I.

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

Kanamori, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Transmission loss characteristics of As40S60 and As38Ge5Se57 glass unclad fibers,” J. Non-Cryst. Solids 69(2-3), 231–242 (1985).
[Crossref]

Kane, D. M.

D. M. Kane, R. J. Chater, D. B. Gore, and D. S. McPhail, “Corrosion at the surface of chalcogenide glass microspheres,” J. Opt. 14(5), 055401 (2012).
[Crossref]

Karaskova, M.

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

Kavetskii, T. S.

T. S. Kavetskii, V. D. Pamukchieva, and O. I. Shpotyuk, “Concentration dependence of impurity absorption in chalcogenide glasses of the Ge-Sb-S system,” J. Appl. Spectrosc. 67(4), 687–692 (2000).
[Crossref]

Kavetskyy, T.

T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, and J. Swiatek, “On the compositional trends in IR impurity absorption of Ge–As(Sb)–S glasses,” J. Optoelectron. Adv. Mater. 6, 1141–1146 (2004).

Kavetskyy, T. S.

T. S. Kavetskyy, A. P. Kovalskiy, V. D. Pamukchieva, and O. I. Shpotyuk, “IR impurity absorption in Sb2S3-GeS2(Ge2S3) chalcogenide glasses,” Infrared Phys. Technol. 41(1), 41–45 (2000).
[Crossref]

Kawashima, H.

Kibler, B.

Klapetek, P.

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

Knight, J. C.

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol. 18(5), 315–321 (2012).
[Crossref]

Kobtsev, S. M.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Kohl-Landgraf, J.

Kohoutek, T.

Kovalskiy, A. P.

T. S. Kavetskyy, A. P. Kovalskiy, V. D. Pamukchieva, and O. I. Shpotyuk, “IR impurity absorption in Sb2S3-GeS2(Ge2S3) chalcogenide glasses,” Infrared Phys. Technol. 41(1), 41–45 (2000).
[Crossref]

Kozdras, A.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

R. Y. Golovchak, A. Kozdras, and O. I. Shpotyuk, “Physical ageing in glassy As-Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

Kozyukhin, S. A.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Krys’kov, T. A.

A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).

Kukarin, S.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Kung, F. H.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Leone, M.

G. Navarra, I. Iliopoulos, V. Militello, S. G. Rotolo, and M. Leone, “OH-related infrared absorption bands in oxide glasses,” J. Non-Cryst. Solids 351(21-23), 1796–1800 (2005).
[Crossref]

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Lesniewska, E.

Macedo, P. B.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Mairaj, A. K.

R. J. Curry, S. W. Birtwell, A. K. Mairaj, X. Feng, and D. W. Hewak, “A study of environmental effects on the attenuation of chalcogenide optical fibre,” J. Non-Cryst. Solids 351(6-7), 477–481 (2005).
[Crossref]

Maklad, M. S.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Marup, S.

M. M. Smedskjaer, Y. Yue, J. Deubener, H. P. Gunnlaugsson, and S. Marup, “Modifying glass surfaces via internal diffusion,” J. Non-Cryst. Solids 356(6-8), 290–298 (2010).
[Crossref]

McPhail, D. S.

D. M. Kane, R. J. Chater, D. B. Gore, and D. S. McPhail, “Corrosion at the surface of chalcogenide glass microspheres,” J. Opt. 14(5), 055401 (2012).
[Crossref]

Mechin, D.

Messaddeq, Y.

Militello, V.

G. Navarra, I. Iliopoulos, V. Militello, S. G. Rotolo, and M. Leone, “OH-related infrared absorption bands in oxide glasses,” J. Non-Cryst. Solids 351(21-23), 1796–1800 (2005).
[Crossref]

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Transmission loss characteristics of As40S60 and As38Ge5Se57 glass unclad fibers,” J. Non-Cryst. Solids 69(2-3), 231–242 (1985).
[Crossref]

Mohr, R. K.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Mouawad, O.

Moynihan, C. T.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Navarra, G.

G. Navarra, I. Iliopoulos, V. Militello, S. G. Rotolo, and M. Leone, “OH-related infrared absorption bands in oxide glasses,” J. Non-Cryst. Solids 351(21-23), 1796–1800 (2005).
[Crossref]

Nazabal, V.

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

Necas, D.

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

Nemec, P.

B. Frumarová, P. Nemec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sb-S: NdCl3 glasses,” Semiconductors 32(8), 812–816 (1998).
[Crossref]

Nguyen, V. Q.

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

Nimsch, J.-E.

Niu, Y.-F.

Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles, “Durability of an As2S3 chalcogenide glass: Optical properties and dissolution kinetics,” J. Non-Cryst. Solids 357(3), 932–938 (2011).
[Crossref]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
[Crossref]

Novotortsev, V. M.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Ohishi, Y.

Oleksenko, P. F.

A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).

Oswald, J.

B. Frumarová, P. Nemec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sb-S: NdCl3 glasses,” Semiconductors 32(8), 812–816 (1998).
[Crossref]

Paiuk, A. P.

A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).

Pamukchieva, V. D.

T. S. Kavetskyy, A. P. Kovalskiy, V. D. Pamukchieva, and O. I. Shpotyuk, “IR impurity absorption in Sb2S3-GeS2(Ge2S3) chalcogenide glasses,” Infrared Phys. Technol. 41(1), 41–45 (2000).
[Crossref]

T. S. Kavetskii, V. D. Pamukchieva, and O. I. Shpotyuk, “Concentration dependence of impurity absorption in chalcogenide glasses of the Ge-Sb-S system,” J. Appl. Spectrosc. 67(4), 687–692 (2000).
[Crossref]

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Picot-Clémente, J.

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

Polacchini, C. F.

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Popescu, M.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Pureza, P.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Pushkin, A. A.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Renard, W.

Renversez, G.

Richardson, D. J.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Riley, B. J.

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7, 1759–1764 (2005).

Rotolo, S. G.

G. Navarra, I. Iliopoulos, V. Militello, S. G. Rotolo, and M. Leone, “OH-related infrared absorption bands in oxide glasses,” J. Non-Cryst. Solids 351(21-23), 1796–1800 (2005).
[Crossref]

Rouxel, T.

Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles, “Durability of an As2S3 chalcogenide glass: Optical properties and dissolution kinetics,” J. Non-Cryst. Solids 357(3), 932–938 (2011).
[Crossref]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
[Crossref]

Sanghera, J. S.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Savelii, I.

Seddon, A. B.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Shpotyuk, O.

T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, and J. Swiatek, “On the compositional trends in IR impurity absorption of Ge–As(Sb)–S glasses,” J. Optoelectron. Adv. Mater. 6, 1141–1146 (2004).

Shpotyuk, O. I.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

R. Y. Golovchak, A. Kozdras, and O. I. Shpotyuk, “Physical ageing in glassy As-Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

T. S. Kavetskii, V. D. Pamukchieva, and O. I. Shpotyuk, “Concentration dependence of impurity absorption in chalcogenide glasses of the Ge-Sb-S system,” J. Appl. Spectrosc. 67(4), 687–692 (2000).
[Crossref]

T. S. Kavetskyy, A. P. Kovalskiy, V. D. Pamukchieva, and O. I. Shpotyuk, “IR impurity absorption in Sb2S3-GeS2(Ge2S3) chalcogenide glasses,” Infrared Phys. Technol. 41(1), 41–45 (2000).
[Crossref]

Shutov, S. D.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

Skripachev, I. V.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Skripatchev, I.

Smedskjaer, M. M.

M. M. Smedskjaer, Y. Yue, J. Deubener, H. P. Gunnlaugsson, and S. Marup, “Modifying glass surfaces via internal diffusion,” J. Non-Cryst. Solids 356(6-8), 290–298 (2010).
[Crossref]

Smektala, F.

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
[Crossref] [PubMed]

O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J.-C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22(20), 23912–23919 (2014).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref] [PubMed]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
[Crossref]

Smirnov, S. V.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Sokolov, V. O.

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

Stolper, E.

E. Stolper, “Water in silicate glasses: An infrared spectroscopic study,” Contrib. Mineral. Petrol. 81(1), 1–17 (1982).
[Crossref]

Stone, J. M.

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol. 18(5), 315–321 (2012).
[Crossref]

Stronski, A. V.

A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).

Strutynski, C.

Suzuki, T.

Swiatek, J.

T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, and J. Swiatek, “On the compositional trends in IR impurity absorption of Ge–As(Sb)–S glasses,” J. Optoelectron. Adv. Mater. 6, 1141–1146 (2004).

Szpulak, M.

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Transmission loss characteristics of As40S60 and As38Ge5Se57 glass unclad fibers,” J. Non-Cryst. Solids 69(2-3), 231–242 (1985).
[Crossref]

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Transmission loss characteristics of As40S60 and As38Ge5Se57 glass unclad fibers,” J. Non-Cryst. Solids 69(2-3), 231–242 (1985).
[Crossref]

Toupin, P.

Troles, J.

P. Toupin, L. Brilland, D. Mechin, J. Adam, and J. Troles, “Optical aging of chalcogenide microstructured optical fibers,” J. Lightwave Technol. 32(13), 2428–2432 (2014).
[Crossref]

Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles, “Durability of an As2S3 chalcogenide glass: Optical properties and dissolution kinetics,” J. Non-Cryst. Solids 357(3), 932–938 (2011).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref] [PubMed]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
[Crossref]

Turitsyn, S. K.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Valtr, M.

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

Varsamis, C. P. E.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

Vuichyk, N. V.

A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).

Wachtveitl, J.

Xian, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Yue, Y.

M. M. Smedskjaer, Y. Yue, J. Deubener, H. P. Gunnlaugsson, and S. Marup, “Modifying glass surfaces via internal diffusion,” J. Non-Cryst. Solids 356(6-8), 290–298 (2010).
[Crossref]

Zajickova, L.

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

Appl. Phys. Lett. (1)

S. Hendy, “Light scattering in transparent glass ceramics,” Appl. Phys. Lett. 81(7), 1171–1173 (2002).
[Crossref]

Contrib. Mineral. Petrol. (1)

E. Stolper, “Water in silicate glasses: An infrared spectroscopic study,” Contrib. Mineral. Petrol. 81(1), 1–17 (1982).
[Crossref]

Diamond Related Materials (1)

D. Franta, L. Zajickova, M. Karaskova, O. Jarek, D. Necas, P. Klapetek, and M. Valtr, “Optical characterization of ultrananocrystalline diamond films,” Diamond Related Materials 17(7-10), 1278–1282 (2008).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13(3), 738–749 (2007).
[Crossref]

Infrared Phys. Technol. (1)

T. S. Kavetskyy, A. P. Kovalskiy, V. D. Pamukchieva, and O. I. Shpotyuk, “IR impurity absorption in Sb2S3-GeS2(Ge2S3) chalcogenide glasses,” Infrared Phys. Technol. 41(1), 41–45 (2000).
[Crossref]

Inorg. Mater. (3)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

J. Alloy. Comp. (1)

F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloy. Comp. 509(27), 7330–7336 (2011).
[Crossref]

J. Am. Ceram. Soc. (3)

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous Corrosion of the GeSe4 Chalcogenide Glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92(8), 1779–1787 (2009).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

J. Appl. Phys. (1)

J. S. Berkes and S. W. Ing Jr., andW. J. Hillegas, “Photodecomposition of Amorphous As2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).

J. Appl. Spectrosc. (1)

T. S. Kavetskii, V. D. Pamukchieva, and O. I. Shpotyuk, “Concentration dependence of impurity absorption in chalcogenide glasses of the Ge-Sb-S system,” J. Appl. Spectrosc. 67(4), 687–692 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (8)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Transmission loss characteristics of As40S60 and As38Ge5Se57 glass unclad fibers,” J. Non-Cryst. Solids 69(2-3), 231–242 (1985).
[Crossref]

G. Navarra, I. Iliopoulos, V. Militello, S. G. Rotolo, and M. Leone, “OH-related infrared absorption bands in oxide glasses,” J. Non-Cryst. Solids 351(21-23), 1796–1800 (2005).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

R. J. Curry, S. W. Birtwell, A. K. Mairaj, X. Feng, and D. W. Hewak, “A study of environmental effects on the attenuation of chalcogenide optical fibre,” J. Non-Cryst. Solids 351(6-7), 477–481 (2005).
[Crossref]

M. M. Smedskjaer, Y. Yue, J. Deubener, H. P. Gunnlaugsson, and S. Marup, “Modifying glass surfaces via internal diffusion,” J. Non-Cryst. Solids 356(6-8), 290–298 (2010).
[Crossref]

Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles, “Durability of an As2S3 chalcogenide glass: Optical properties and dissolution kinetics,” J. Non-Cryst. Solids 357(3), 932–938 (2011).
[Crossref]

J. Opt. (1)

D. M. Kane, R. J. Chater, D. B. Gore, and D. S. McPhail, “Corrosion at the surface of chalcogenide glass microspheres,” J. Opt. 14(5), 055401 (2012).
[Crossref]

J. Optoelectron. Adv. Mater. (3)

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7, 1759–1764 (2005).

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001).

T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, and J. Swiatek, “On the compositional trends in IR impurity absorption of Ge–As(Sb)–S glasses,” J. Optoelectron. Adv. Mater. 6, 1141–1146 (2004).

Opt. Express (6)

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref] [PubMed]

J. Kohl-Landgraf, J.-E. Nimsch, and J. Wachtveitl, “LiF, an underestimated supercontinuum source in femtosecond transient absorption spectroscopy,” Opt. Express 21(14), 17060–17065 (2013).
[Crossref] [PubMed]

O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J.-C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22(20), 23912–23919 (2014).
[Crossref]

Opt. Fiber Technol. (2)

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol. 18(5), 315–321 (2012).
[Crossref]

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Opt. Lett. (1)

Semiconductor Physics, Quantum Electronics & Optoelectronics (1)

A. P. Paiuk, A. V. Stronski, N. V. Vuichyk, A. A. Gubanova, T. A. Krys’kov, and P. F. Oleksenko, “Mid-IR impurity absorption in As2S3 chalcogenide glasses doped with transition metals,” Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 152–156 (2012).

Semiconductors (1)

B. Frumarová, P. Nemec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sb-S: NdCl3 glasses,” Semiconductors 32(8), 812–816 (1998).
[Crossref]

Solid State Commun. (1)

R. Y. Golovchak, A. Kozdras, and O. I. Shpotyuk, “Physical ageing in glassy As-Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

Other (1)

V. Kokorina, Glasses for Infrared Optics (The CRC Press, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Profile of the tested chalcogenide As2S3 suspended-core fibre captured by means of SEM.
Fig. 2
Fig. 2 Transmission spectra registered on As2S3 MOF with amplification of absorption bands for an exposition time of (a) 0 to 46 h (b) 46 to 384 h.
Fig. 3
Fig. 3 Ratio of Near-Infrared spectra after 32 h (a) and 103 h (b) of exposure, showing sloping background and the linear correction adopted for background subtraction.
Fig. 4
Fig. 4 Deconvoluted absorption spectra over time scale (a) 4 h, (b) 6 h, (c) 24 h and (d) 32 h respectively.
Fig. 5
Fig. 5 Additional attenuation for 2.8m of As2S3 MOF as a function of exposure time to ambient conditions.
Fig. 6
Fig. 6 Attenuation evolution with time of different OH groups' vibration modes for 2.8 m of an As2S3 MOF: (a) OH vibrations at 2.77 µm and 2.91 µm; (b) OH vibrations at 1.92 µm.
Fig. 7
Fig. 7 Schematic representation of fibre sections considered for studying the longitudinal distribution of absorbing species.
Fig. 8
Fig. 8 Attenuation spectra of sections S1 and S4 of the 384 h aged As2S3 MOF, located at different distances from the fibre's output: (a) Attenuation of section S1, the first 7 cm of the MOF; (b) Attenuation of section S4 located at ~100 cm from the MOF end.
Fig. 9
Fig. 9 (a) Measured attenuation (black squares) of 1.92 µm absorption band and calculated absolute content (blue stars) of corresponding OH groups in one half of the fibre as a function of distance from the fibre edge; (b) Similar evolution for the second half of the fibre. Results reported for an As2S3 MOF exposed for 384 h to room atmosphere.
Fig. 10
Fig. 10 IR transmission spectra of airproofed As2S3 MOF as a function of time exposure to ambient atmosphere.

Tables (2)

Tables Icon

Table 1 Assignment of absorption bands in As2S3 glass in the 1 – 4 µm range [9, 2637].

Tables Icon

Table 2 Attenuations for each deconvoluted peak after background corrections, for 2.8 meters of As2S3 MOF.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α t ( d B ) = 10 × log ( I t I 0 )
α S n = 10 L n 1 L n log ( T n T n 1 ) ( dB / m )
[ O H ] p p m = α d B / m β
β ( c m 1 . p p m 1 ) = ε ( l . m o l 1 . c m 1 ) × [ 10 6 . [ ρ A s 2 S 3 / M O H ] ]
β ( d B . m 1 . p p m 1 ) = 1000 × β ( c m 1 . p p m 1 )

Metrics