Abstract

A new technique for measuring thermal conductivity of solids, including creation of a steady-state one-dimensional heat flow through a studied sample and measurement of temperature distribution using phase-shifting interferometry has been developed. The technique is a handy tool for studying small-size (> 1 mm) samples. The thermal conductivity of new magneto-optical materials such as Ce:TAG optical ceramics (0%, 0.05% and 0.1% doping), MgAl2O4 spinal ceramics, and Tb2O3–B2O3-GeO2 magneto-optical glass was measured.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics

Hiroaki Furuse and Ryo Yasuhara
Opt. Mater. Express 7(3) 827-833 (2017)

Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power

Aleksey Starobor, Dmitry Zheleznov, Oleg Palashov, Chong Chen, Shengming Zhou, and Ryo Yasuhara
Opt. Mater. Express 4(10) 2127-2132 (2014)

High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics

Hiroaki Furuse, Ryo Yasuhara, Keijiro Hiraga, and Shengming Zhou
Opt. Mater. Express 6(1) 191-196 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
    [Crossref]
  2. V. Sazegari, M. R. Milani, and A. K. Jafari, “Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers,” Appl. Opt. 49(36), 6910–6916 (2010).
    [Crossref] [PubMed]
  3. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb: YAG crystals in the 80 — 300 K temperature range,” Quantum Electron. 41(11), 1045–1050 (2011).
    [Crossref]
  4. Y. Sato, J. Akiyama, and T. Taira, “Orientation control of micro-domains in anisotropic laser ceramics,” Opt. Mater. Express 3(6), 829–841 (2013).
    [Crossref]
  5. V. Vasyliev, P. Molina, M. Nakamura, E. G. Víllora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
    [Crossref]
  6. J. Morikawa and T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37(Part 2, No. 12A), L1484–L1487 (1998).
    [Crossref]
  7. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
    [Crossref]
  8. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006).
    [Crossref] [PubMed]
  9. ASTM E 1225, “Standard test method for thermal conductivity of solids using the guarded-comparative-longitudinal heat flow technique,” http://www.astm.org/Standards/E1225.htm .
  10. R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express 20(28), 29531–29539 (2012).
    [Crossref] [PubMed]
  11. K. Creath, “Phase-measurement interferometry techniques,” Progress in Optics 26, 349–393 (1989).
    [Crossref]
  12. B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
    [Crossref]
  13. I. Kuznetsov, I. Mukhin, O. Vadimova, E. Perevezentsev, and O. Palashov, “Comparison of thermal effects in Yb:YAG disk laser head at room and cryogenic temperature conditions,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) 2013), paper AM4A.33.
    [Crossref]
  14. Thermalinfo, “Table 1. Thermal conductivity of steel and cast iron,” http://thermalinfo.ru/publ/tverdye_veshhestva/metally_i_splavy/teploprovodnost_teploemkost_stalej_i_chuguna/7-1-0-8 .
  15. CrystalTechno, “Material Fused Silica (KV),” http://www.crystaltechno.com/FS_visible_en.htm .
  16. I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, “Terbium gallium garnet for high average power Faraday isolators: modern aspects of growing and characterization,” in CLEO/Europe and EQEC 2009 Conference Digest, 2009), paper CE_P12.
  17. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
    [Crossref]

2014 (1)

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

V. Vasyliev, P. Molina, M. Nakamura, E. G. Víllora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[Crossref]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb: YAG crystals in the 80 — 300 K temperature range,” Quantum Electron. 41(11), 1045–1050 (2011).
[Crossref]

2010 (1)

2008 (1)

B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

2006 (1)

1998 (1)

J. Morikawa and T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37(Part 2, No. 12A), L1484–L1487 (1998).
[Crossref]

1992 (1)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

1989 (1)

K. Creath, “Phase-measurement interferometry techniques,” Progress in Optics 26, 349–393 (1989).
[Crossref]

1961 (1)

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]

Abbott, G. L.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]

Akiyama, J.

Butler, C. P.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

Creath, K.

K. Creath, “Phase-measurement interferometry techniques,” Progress in Optics 26, 349–393 (1989).
[Crossref]

Furuse, H.

Hashimoto, T.

J. Morikawa and T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37(Part 2, No. 12A), L1484–L1487 (1998).
[Crossref]

Iwamoto, A.

Jafari, A. K.

Jenkins, R. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]

Jia, X.

B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Jiang, H.

B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Kawanaka, J.

Khazanov, E. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb: YAG crystals in the 80 — 300 K temperature range,” Quantum Electron. 41(11), 1045–1050 (2011).
[Crossref]

Kuznetsov, I. I.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Milani, M. R.

Molina, P.

V. Vasyliev, P. Molina, M. Nakamura, E. G. Víllora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[Crossref]

Morikawa, J.

J. Morikawa and T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37(Part 2, No. 12A), L1484–L1487 (1998).
[Crossref]

Mukhin, I. B.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb: YAG crystals in the 80 — 300 K temperature range,” Quantum Electron. 41(11), 1045–1050 (2011).
[Crossref]

Nakamura, M.

V. Vasyliev, P. Molina, M. Nakamura, E. G. Víllora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[Crossref]

Palashov, O. V.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb: YAG crystals in the 80 — 300 K temperature range,” Quantum Electron. 41(11), 1045–1050 (2011).
[Crossref]

Parker, W. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]

Perevezentsev, E. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb: YAG crystals in the 80 — 300 K temperature range,” Quantum Electron. 41(11), 1045–1050 (2011).
[Crossref]

Sato, Y.

Sazegari, V.

Shimamura, K.

V. Vasyliev, P. Molina, M. Nakamura, E. G. Víllora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[Crossref]

Silin, D. E.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Sun, D.

B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Taira, T.

Vadimova, O. L.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Vasyliev, V.

V. Vasyliev, P. Molina, M. Nakamura, E. G. Víllora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[Crossref]

Víllora, E. G.

V. Vasyliev, P. Molina, M. Nakamura, E. G. Víllora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[Crossref]

Vyatkin, A. G.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb: YAG crystals in the 80 — 300 K temperature range,” Quantum Electron. 41(11), 1045–1050 (2011).
[Crossref]

Wang, B.

B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Yanagitani, T.

Yasuhara, R.

Yin, S.

B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Zhang, Q.

B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Appl. Opt. (1)

Front. Optoelectron. China (1)

B. Wang, H. Jiang, X. Jia, Q. Zhang, D. Sun, and S. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

J. Appl. Phys. (1)

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. Morikawa and T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37(Part 2, No. 12A), L1484–L1487 (1998).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

V. Vasyliev, P. Molina, M. Nakamura, E. G. Víllora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[Crossref]

Opt. Mater. Express (1)

Progress in Optics (1)

K. Creath, “Phase-measurement interferometry techniques,” Progress in Optics 26, 349–393 (1989).
[Crossref]

Quantum Electron. (1)

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb: YAG crystals in the 80 — 300 K temperature range,” Quantum Electron. 41(11), 1045–1050 (2011).
[Crossref]

Other (5)

I. Kuznetsov, I. Mukhin, O. Vadimova, E. Perevezentsev, and O. Palashov, “Comparison of thermal effects in Yb:YAG disk laser head at room and cryogenic temperature conditions,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) 2013), paper AM4A.33.
[Crossref]

Thermalinfo, “Table 1. Thermal conductivity of steel and cast iron,” http://thermalinfo.ru/publ/tverdye_veshhestva/metally_i_splavy/teploprovodnost_teploemkost_stalej_i_chuguna/7-1-0-8 .

CrystalTechno, “Material Fused Silica (KV),” http://www.crystaltechno.com/FS_visible_en.htm .

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, “Terbium gallium garnet for high average power Faraday isolators: modern aspects of growing and characterization,” in CLEO/Europe and EQEC 2009 Conference Digest, 2009), paper CE_P12.

ASTM E 1225, “Standard test method for thermal conductivity of solids using the guarded-comparative-longitudinal heat flow technique,” http://www.astm.org/Standards/E1225.htm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Schematic of measuring thermal conductivity of solid bodies: (a) construction unit, (b) scheme of Mach-Zehnder interferometer.
Fig. 2
Fig. 2 Scheme of processing experimental data: (a) interference patterns when heat is switched on and off, (b) variation of the optical path length in the interferometer arm when heat is switched on, (c) temperature variation in standard bodies when heat is switched on, (d) calculation of temperature jump between the bases of the standard bodies adjacent to the sample. Solid lines –experimental data; dash grey lines – linear approximations of temperature distribution inside the standard bodies; dot-dash line – lower dash line up-shifted by the distance separating the standard bodies.

Tables (1)

Tables Icon

Table 1 Results of measuring thermal conductivity in solid bodies

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L = λ 2 π ( φ h o t φ c o l d ) ,
T = L l c r y s t ( d n d T + α t h e r m ( n 0 1 ) ) ,
P h e a t _ c r = κ S t a n S d T d y ,
κ = P h e a t H s a m p S ( Δ T 2 Δ T i n t e r f a c e ) ,

Metrics