Abstract

Zr4+-doped LiNbO3 plates were prepared by diffusion of ZrO2 films coated onto congruent LiNbO3 substrates in wet O2. After diffusion, Zr4+-doping effect on refractive index of LiNbO3 and Li2O out diffusion were studied by prism coupling technique. The results show that the Li2O out diffusion is ignorable and Zr4+ doping has little effect on both the ordinary and extraordinary indices. The little effect of diffusion-doping is clearly different from the bulk doping case reported previously, in which both ordinary and extraordinary indices show definite Zr4+ doping concentration effect. The difference is attributed to the different ion arrangements from crystal growth to in-diffusion.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics

De-Long Zhang, Jian Kang, Qun Zhang, W. J. Du, W. H. Wong, and E. Y. B. Pun
Opt. Mater. Express 5(8) 1715-1721 (2015)

Effects of Zr4+ co-doping on the spectroscopic properties and yellow light emissions of Dy3+ in LiNbO3 single crystals

S. W. Long, D. C. Ma, Y. Z. Zhu, S. P. Lin, and B. Wang
Opt. Mater. Express 6(10) 3354-3365 (2016)

Near-stoichiometric Ti:Sc:LiNbO3 strip waveguide for integrated optics

Xiao-Fei Yang, Zi-Bo Zhang, Wan-Ying Du, Qun Zhang, Wing-Han Wong, Dao-Yin Yu, Edwin Yue-Bun Pun, and De-Long Zhang
Opt. Mater. Express 6(8) 2637-2643 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
    [Crossref]
  2. C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
    [Crossref]
  3. G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
    [Crossref]
  4. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]
  5. T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO3: Zn crystal,” Opt. Lett. 15(18), 996–998 (1990).
    [Crossref] [PubMed]
  6. M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
    [Crossref]
  7. J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
    [Crossref]
  8. K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
    [Crossref]
  9. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
    [Crossref]
  10. Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
    [Crossref]
  11. L. Z. Wang, S. G. Liu, Y. F. Kong, S. L. Chen, Z. H. Huang, L. Wu, R. Rupp, and J. J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
    [Crossref] [PubMed]
  12. G. Nava, P. Minzioni, W. B. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express 1(2), 270–277 (2011).
    [Crossref]
  13. L. Kovács, Z. Szaller, K. Lengyel, Á. Péter, I. Hajdara, G. Mandula, L. Pálfalvi, and J. Hebling, “Photorefractive damage resistance threshold in stoichiometric LiNbO₃:Zr crystals,” Opt. Lett. 38(15), 2861–2864 (2013).
    [Crossref] [PubMed]
  14. S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
    [Crossref]
  15. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
    [Crossref]
  16. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
    [Crossref] [PubMed]
  17. Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
    [Crossref]
  18. B. Chen, P. R. Hua, D. L. Zhang, and E. Y. B. Pun, “Stoichiometry dependence of Li+ diffusivity in LiNbO3 crystal in off-congruent, Li-deficient regime,” J. Am. Ceram. Soc. 95(3), 1018–1022 (2012).

2013 (1)

2012 (2)

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

B. Chen, P. R. Hua, D. L. Zhang, and E. Y. B. Pun, “Stoichiometry dependence of Li+ diffusivity in LiNbO3 crystal in off-congruent, Li-deficient regime,” J. Am. Ceram. Soc. 95(3), 1018–1022 (2012).

2011 (1)

2010 (1)

2007 (1)

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

2005 (2)

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

2001 (1)

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

2000 (1)

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

1998 (1)

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

1996 (3)

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

1995 (1)

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

1993 (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

1990 (1)

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Argiolas, N.

Balsamo, S.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Bazzan, M.

Becker, Ch.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Betzler, K.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Chen, B.

B. Chen, P. R. Hua, D. L. Zhang, and E. Y. B. Pun, “Stoichiometry dependence of Li+ diffusivity in LiNbO3 crystal in off-congruent, Li-deficient regime,” J. Am. Ceram. Soc. 95(3), 1018–1022 (2012).

Chen, S. L.

L. Z. Wang, S. G. Liu, Y. F. Kong, S. L. Chen, Z. H. Huang, L. Wu, R. Rupp, and J. J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref] [PubMed]

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Ciampolillo, M. V.

Cristiani, I.

de Sandro, J. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Degiorgio, V.

Furukawa, Y.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Gather, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Grando, D.

Grundkotter, W.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Hajdara, I.

Han, F.

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

Hebling, J.

Hempstead, M.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Hofmann, D.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Hua, P. R.

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

B. Chen, P. R. Hua, D. L. Zhang, and E. Y. B. Pun, “Stoichiometry dependence of Li+ diffusivity in LiNbO3 crystal in off-congruent, Li-deficient regime,” J. Am. Ceram. Soc. 95(3), 1018–1022 (2012).

Huang, C. H.

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

Huang, Z. H.

Iyi, N.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Jones, J. K.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Kasemir, K.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Kimura, S.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Kitamura, K.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Kokanyan, E. P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Kong, Y. F.

L. Z. Wang, S. G. Liu, Y. F. Kong, S. L. Chen, Z. H. Huang, L. Wu, R. Rupp, and J. J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref] [PubMed]

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Kovács, L.

Lee, Y. L.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Lengyel, K.

Liu, H. D.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, S. G.

L. Z. Wang, S. G. Liu, Y. F. Kong, S. L. Chen, Z. H. Huang, L. Wu, R. Rupp, and J. J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref] [PubMed]

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, Y. W.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Mandula, G.

Matzas, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

McCaughan, L.

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

Minzioni, P.

Montrosset, I.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Musso, E.

Nakamura, M.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Nava, G.

Oesselke, T.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Pálfalvi, L.

Pandavenes, J.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Parravicini, J.

Péter, Á.

Pryalkin, V. I.

Pun, E. Y. B.

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

B. Chen, P. R. Hua, D. L. Zhang, and E. Y. B. Pun, “Stoichiometry dependence of Li+ diffusivity in LiNbO3 crystal in off-congruent, Li-deficient regime,” J. Am. Ceram. Soc. 95(3), 1018–1022 (2012).

Quiring, V.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Ricken, R.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Rochhausen, K.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Rubinina, N.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Rubinina, N. M.

Rupp, R.

Sada, C.

Sato, M.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Schlarb, U.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Schreiber, G.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Schreiberg, G.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Sciancalepore, D.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Shepherd, D. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Shimamura, S.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Sohler, W.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Sota, T.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Suche, H.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Sugimoto, A.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Suzuki, K.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Szaller, Z.

Takekawa, S.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Tiegel, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Tropper, A. C.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Volk, T.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Volk, T. R.

Wahlbrink, T.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Wang, J.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Wang, L. Z.

Wang, Z.

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

Watanabe, Y.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Wessel, R.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Wöhlecke, M.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Wu, L.

Xu, J. J.

L. Z. Wang, S. G. Liu, Y. F. Kong, S. L. Chen, Z. H. Huang, L. Wu, R. Rupp, and J. J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref] [PubMed]

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Yajima, Y.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Yamagishi, K.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Yamazaki, T.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Yan, W. B.

Yu, D. Y.

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

Zaltron, A.

Zhang, D. L.

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

B. Chen, P. R. Hua, D. L. Zhang, and E. Y. B. Pun, “Stoichiometry dependence of Li+ diffusivity in LiNbO3 crystal in off-congruent, Li-deficient regime,” J. Am. Ceram. Soc. 95(3), 1018–1022 (2012).

Zhao, Y. J.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Appl. Phys. Lett. (3)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

J. Am. Ceram. Soc. (2)

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

B. Chen, P. R. Hua, D. L. Zhang, and E. Y. B. Pun, “Stoichiometry dependence of Li+ diffusivity in LiNbO3 crystal in off-congruent, Li-deficient regime,” J. Am. Ceram. Soc. 95(3), 1018–1022 (2012).

J. Appl. Phys. (1)

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

J. Cryst. Growth (1)

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

J. Phys. Condens. Matter (1)

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

J. Solid State Chem. (1)

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Proc. SPIE (1)

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1 (a) Depth profiles of 7Li, 109NbO, 32O2, and 123ZrO2 SIMS signals detected from a Z-cut LN plate coated with 80 nm ZrO2 and annealed at 1060 °C for 10 h in wet O2. The resultant CZr at surface is 4.1 ± 0.3 mol%. (b) Zr4+ diffusion-doping induced (a) Δne and (b) Δno measured as a function of surface Zr4+ concentration CZr.

Tables (1)

Tables Icon

Table 1 Surface CZr, refractive indices (at 1553 nm) at Zr4+-doped and undoped surface parts of LN plates prepared by Zr4+ diffusion. The Δno and Δne values are also given.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(z)=I(0)exp[ (z/d) 2 ],
C(z)=C(0)exp[ (z/d) 2 ],

Metrics