Abstract

Nonpolar (112¯0) a-plane MgZnO films were grown on different a-GaN/r-sapphire templates by pulsed laser deposition (PLD), where the growth temperature of GaN buffer layers varied from 700 °C to 1000 °C. High-quality a-plane MgZnO epitaxial film was deposited on the optimized 1000 °C a-GaN/r-sapphire template. Temperature-dependent PL measurements of a-plane MgZnO films reveal an S-type temperature dependence of the excitonic recombination energy. It is resulted that the excitons are localized in alloy-induced potential fluctuations at low temperature and the room-temperature quantum efficiency is calculated to be 9.2%. An involvement of band-tail states in the radiative recombination was considered, and a quantitative description of the blue temperature-induced shift was obtained assuming a Gaussian shape of the band tail.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical spectroscopic investigation of m-plane GaN thin films

Antaryami Mohanta, Yan-Zhi Tzeng, Meng-En Lee, Dah-Chin Ling, Ying-Chieh Wang, Ikai Lo, and Der-Jun Jang
Opt. Mater. Express 4(9) 1920-1931 (2014)

Growth of low-defect-density nonpolar a-plane GaN on r-plane sapphire using pulse NH3 interrupted etching

Ji-Su Son, Yoshio Honda, and Hiroshi Amano
Opt. Express 22(3) 3585-3592 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett.103(9), 091107 (2013).
    [Crossref]
  2. O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
    [Crossref]
  3. Y. S. Choi, J. W. Kang, B. H. Kim, and S. J. Park, “Enhanced ultraviolet emission of MgZnO/ZnO multiple quantum wells light-emitting diode by p-type MgZnO electron blocking layer,” Opt. Express21(25), 31560–31566 (2013).
    [Crossref] [PubMed]
  4. L. C. Zhang, Q. S. Li, L. Shang, F. F. Wang, C. Qu, and F. Z. Zhao, “Improvement of UV electroluminescence of n-ZnO/p-GaN heterojunction LED by ZnS interlayer,” Opt. Express21(14), 16578–16583 (2013).
    [Crossref] [PubMed]
  5. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
    [Crossref]
  6. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
    [Crossref]
  7. Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
    [Crossref]
  8. I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
    [Crossref]
  9. W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
    [Crossref]
  10. K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
    [Crossref]
  11. K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
    [Crossref]
  12. K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
    [Crossref]
  13. J. S. Liu, C. X. Shan, B. H. Li, Z. Z. Zhang, K. W. Liu, and D. Z. Shen, “MgZnO p-n heterostructure light-emitting devices,” Opt. Lett.38(12), 2113–2115 (2013).
    [Crossref] [PubMed]
  14. Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
    [Crossref]
  15. J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
    [Crossref]
  16. A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
    [Crossref]
  17. J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
    [Crossref]
  18. J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
    [Crossref]
  19. H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
    [Crossref]
  20. M. Liang, Y. Ho, W. Wang, C. Peng, and L. Chang, “Growth of ZnMgO/ZnO films on r-plane sapphires by pulsed laser deposition,” J. Cryst. Growth310(7-9), 1847–1852 (2008).
    [Crossref]
  21. J. Zippel, M. Lorenz, M. Lange, M. Stolzel, G. Benndorf, and M. Grundmann, “Growth control of nonpolar and polar ZnO/MgxZn1-xO quantum wells by pulsed-laser deposition,” J. Cryst. Growth364, 81–87 (2013).
    [Crossref]
  22. S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
    [Crossref]
  23. S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
    [Crossref]
  24. B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
    [Crossref]
  25. Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
    [Crossref]
  26. K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, “Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates,” J. Appl. Phys.109(8), 083524 (2011).
    [Crossref]
  27. T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
    [Crossref]
  28. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
    [Crossref]
  29. L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys.94(2), 973–978 (2003).
    [Crossref]
  30. H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
    [Crossref]
  31. P. G. Eliseev, “The red σ2/kT spectral shift in partially disordered semiconductors,” J. Appl. Phys.93(9), 5404–5415 (2003).
    [Crossref]
  32. H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
    [Crossref]

2014 (1)

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

2013 (5)

2012 (4)

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

2011 (1)

K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, “Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates,” J. Appl. Phys.109(8), 083524 (2011).
[Crossref]

2010 (2)

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

2009 (1)

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

2008 (3)

M. Liang, Y. Ho, W. Wang, C. Peng, and L. Chang, “Growth of ZnMgO/ZnO films on r-plane sapphires by pulsed laser deposition,” J. Cryst. Growth310(7-9), 1847–1852 (2008).
[Crossref]

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

2007 (3)

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

2005 (1)

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

2004 (2)

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

2003 (4)

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys.94(2), 973–978 (2003).
[Crossref]

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

P. G. Eliseev, “The red σ2/kT spectral shift in partially disordered semiconductors,” J. Appl. Phys.93(9), 5404–5415 (2003).
[Crossref]

2002 (2)

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
[Crossref]

S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
[Crossref]

2000 (1)

H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
[Crossref]

1998 (2)

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Adekore, B. T.

K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, “Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates,” J. Appl. Phys.109(8), 083524 (2011).
[Crossref]

Ali, Y. S.

K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, “Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates,” J. Appl. Phys.109(8), 083524 (2011).
[Crossref]

Alves, E.

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

Aronova, M. A.

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

Baik, K. H.

K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett.103(9), 091107 (2013).
[Crossref]

Bendersky, L. A.

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

Benndorf, G.

J. Zippel, M. Lorenz, M. Lange, M. Stolzel, G. Benndorf, and M. Grundmann, “Growth control of nonpolar and polar ZnO/MgxZn1-xO quantum wells by pulsed-laser deposition,” J. Cryst. Growth364, 81–87 (2013).
[Crossref]

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Bergmaier, A.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

Chai, G.

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Chang, K. S.

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

Chang, L.

M. Liang, Y. Ho, W. Wang, C. Peng, and L. Chang, “Growth of ZnMgO/ZnO films on r-plane sapphires by pulsed laser deposition,” J. Cryst. Growth310(7-9), 1847–1852 (2008).
[Crossref]

Chauveau, J. M.

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Chen, C.

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

Chen, C. Q.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

Chen, Y. F.

H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
[Crossref]

Cho, Y. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

Choi, Y. S.

Choopun, S.

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
[Crossref]

S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
[Crossref]

Chow, L.

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Cui, Y.

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

Dai, J. N.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

DenBaars, S. P.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

Deparis, C.

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Dollinger, G.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

Dong, X.

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

Du, G.

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

Du, X. L.

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Eickhoff, M.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

Eliseev, P. G.

P. G. Eliseev, “The red σ2/kT spectral shift in partially disordered semiconductors,” J. Appl. Phys.93(9), 5404–5415 (2003).
[Crossref]

Fan, X. W.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

Fang, Y. Y.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

Fischer, A. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

Franco, N.

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

Fritsch, D.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Gaevski, M.

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

Gainer, G. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

Gao, Y. H.

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

Giles, N. C.

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys.94(2), 973–978 (2003).
[Crossref]

Gong, Z.

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

Gries, K. I.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

Grundmann, M.

J. Zippel, M. Lorenz, M. Lange, M. Stolzel, G. Benndorf, and M. Grundmann, “Growth control of nonpolar and polar ZnO/MgxZn1-xO quantum wells by pulsed-laser deposition,” J. Cryst. Growth364, 81–87 (2013).
[Crossref]

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Guo, Y.

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Hama, K.

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Han, X. Y.

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

He, H. P.

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

He, Q. H.

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

Heitsch, S.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Hierro, A.

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

Ho, Y.

M. Liang, Y. Ho, W. Wang, C. Peng, and L. Chang, “Growth of ZnMgO/ZnO films on r-plane sapphires by pulsed laser deposition,” J. Cryst. Growth310(7-9), 1847–1852 (2008).
[Crossref]

Hochmuth, H.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Huang, J. Y.

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

Hullavarad, S. S.

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

Iliadis, A. A.

S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
[Crossref]

Inoue, M.

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Inumpudi, A.

S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
[Crossref]

Ishizuka, S.

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Jang, S.

K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett.103(9), 091107 (2013).
[Crossref]

Jiang, D. Y.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

Jiang, J.

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

Jung, S.

K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett.103(9), 091107 (2013).
[Crossref]

Kang, J. W.

Kawasaki, M.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Keller, S.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

Khan, M. A.

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

Kim, B. H.

Kim, H.

K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett.103(9), 091107 (2013).
[Crossref]

Kim, J.

K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett.103(9), 091107 (2013).
[Crossref]

Ko, H. J.

H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
[Crossref]

Kobayashi, I.

H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
[Crossref]

Koida, T.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Koike, K.

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Koinuma, H.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Krahnert, A.

K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, “Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates,” J. Appl. Phys.109(8), 083524 (2011).
[Crossref]

Krishnamoorthy, S.

S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
[Crossref]

Kuznetsov, A. Y.

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Lange, M.

J. Zippel, M. Lorenz, M. Lange, M. Stolzel, G. Benndorf, and M. Grundmann, “Growth control of nonpolar and polar ZnO/MgxZn1-xO quantum wells by pulsed-laser deposition,” J. Cryst. Growth364, 81–87 (2013).
[Crossref]

Laufer, A.

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

Laugt, M.

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Laumer, B.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

Li, B. H.

Li, Q. S.

Li, X. Y.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

Li, Y.

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

Li, Y. L.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

Liang, H. L.

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Liang, M.

M. Liang, Y. Ho, W. Wang, C. Peng, and L. Chang, “Growth of ZnMgO/ZnO films on r-plane sapphires by pulsed laser deposition,” J. Cryst. Growth310(7-9), 1847–1852 (2008).
[Crossref]

Liu, D.

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

Liu, J. S.

Liu, K.

K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, “Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates,” J. Appl. Phys.109(8), 083524 (2011).
[Crossref]

Liu, K. W.

J. S. Liu, C. X. Shan, B. H. Li, Z. Z. Zhang, K. W. Liu, and D. Z. Shen, “MgZnO p-n heterostructure light-emitting devices,” Opt. Lett.38(12), 2113–2115 (2013).
[Crossref] [PubMed]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

Liu, Z. L.

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Lo, B.

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Lorenz, K.

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

Lorenz, M.

J. Zippel, M. Lorenz, M. Lange, M. Stolzel, G. Benndorf, and M. Grundmann, “Growth control of nonpolar and polar ZnO/MgxZn1-xO quantum wells by pulsed-laser deposition,” J. Cryst. Growth364, 81–87 (2013).
[Crossref]

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Lu, Y. M.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

Lupan, O.

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Maier, S.

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

Masubuchi, K.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Matsubara, K.

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Mei, Z. X.

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Meyer, B. K.

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

Mishra, U. K.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

Monaico, E.

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Morhain, C.

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Munoz, E.

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

Nagaraj, B.

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

Nakashima, I.

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Niki, S.

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Nobis, T.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Ogata, K.

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Ohtomo, A.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Pan, X. H.

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

Park, S. J.

Pauporte, T.

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Peng, C.

M. Liang, Y. Ho, W. Wang, C. Peng, and L. Chang, “Growth of ZnMgO/ZnO films on r-plane sapphires by pulsed laser deposition,” J. Cryst. Growth310(7-9), 1847–1852 (2008).
[Crossref]

Peng, T. C.

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

Pierce, J. M.

K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, “Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates,” J. Appl. Phys.109(8), 083524 (2011).
[Crossref]

Qu, C.

Redondo-Cubero, A.

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

Rheinländer, B.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Sakai, M.

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Sakurai, K.

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Sakurai, Y.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Sasa, S.

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Schmidt-Grund, R.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Schulz, C.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Schuster, F.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

Segawa, Y.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Shan, C. X.

J. S. Liu, C. X. Shan, B. H. Li, Z. Z. Zhang, K. W. Liu, and D. Z. Shen, “MgZnO p-n heterostructure light-emitting devices,” Opt. Lett.38(12), 2113–2115 (2013).
[Crossref] [PubMed]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

Shang, L.

Sharma, R. P.

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
[Crossref]

Shen, D. Z.

J. S. Liu, C. X. Shan, B. H. Li, Z. Z. Zhang, K. W. Liu, and D. Z. Shen, “MgZnO p-n heterostructure light-emitting devices,” Opt. Lett.38(12), 2113–2115 (2013).
[Crossref] [PubMed]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

Shen, H.

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
[Crossref]

Shibata, H.

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Song, J. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

Spemann, D.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Stolzel, M.

J. Zippel, M. Lorenz, M. Lange, M. Stolzel, G. Benndorf, and M. Grundmann, “Growth control of nonpolar and polar ZnO/MgxZn1-xO quantum wells by pulsed-laser deposition,” J. Cryst. Growth364, 81–87 (2013).
[Crossref]

Sturm, C.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Stutzmann, M.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

Su, M.

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

Tabares, G.

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

Takada, G.

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Takeuchi, I.

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

Tampo, H.

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Teisseire, M.

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Tian, W.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

Tiginyanu, I. M.

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Uchiki, H.

H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
[Crossref]

Ursaki, V. V.

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Venkatesan, T.

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
[Crossref]

S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
[Crossref]

Vennegues, P.

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Viana, B.

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

Vinter, B.

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Vispute, R. D.

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
[Crossref]

S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
[Crossref]

Vogel, S.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

Volz, K.

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

Wan, Q. X.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

Wang, F. F.

Wang, H.

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

Wang, L.

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys.94(2), 973–978 (2003).
[Crossref]

Wang, R.

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Wang, W.

M. Liang, Y. Ho, W. Wang, C. Peng, and L. Chang, “Growth of ZnMgO/ZnO films on r-plane sapphires by pulsed laser deposition,” J. Cryst. Growth310(7-9), 1847–1852 (2008).
[Crossref]

Wang, Z. J.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

Wassner, T. A.

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

Wu, F.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

Wu, Z. H.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

Xiang, R. F.

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

Xiao, X. H.

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

Xu, J. T.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

Yamada, A.

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Yang, J.

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

Yang, S.

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

Yang, W.

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
[Crossref]

Yano, M.

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Yao, B.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

Yao, T.

H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
[Crossref]

Yasuda, T.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Ye, C. L.

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

Ye, Z. Z.

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

Yoshida, Y.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

Yu, C. H.

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

Zhang, J.

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

Zhang, J. Y.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

Zhang, L. C.

Zhang, Y.

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

Zhang, Y. Z.

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

Zhang, Z. Z.

Zhao, D. X.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

Zhao, F. Z.

Zhao, J. M.

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Zhao, Y. M.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

Zhu, H.

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

Zhu, Z.

H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
[Crossref]

Zimmermann, G.

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

Zippel, J.

J. Zippel, M. Lorenz, M. Lange, M. Stolzel, G. Benndorf, and M. Grundmann, “Growth control of nonpolar and polar ZnO/MgxZn1-xO quantum wells by pulsed-laser deposition,” J. Cryst. Growth364, 81–87 (2013).
[Crossref]

Appl. Phys. Lett. (10)

K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett.103(9), 091107 (2013).
[Crossref]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998).
[Crossref]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett.80(9), 1529–1531 (2002).
[Crossref]

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett.82(20), 3424–3426 (2003).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, and X. W. Fan, “Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection,” Appl. Phys. Lett.91(20), 201106 (2007).
[Crossref]

H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (110) GaN templates and coalesced epitaxial lateral overgrown films deposited on (102) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004).
[Crossref]

B. Laumer, F. Schuster, M. Stutzmann, A. Bergmaier, G. Dollinger, S. Vogel, K. I. Gries, K. Volz, and M. Eickhoff, “Growth study of nonpolar Zn1x Mg x O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.101(12), 122106 (2012).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998).
[Crossref]

H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy,” Appl. Phys. Lett.76(14), 1905–1907 (2000).
[Crossref]

H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett.90(12), 124104 (2007).
[Crossref]

Appl. Surf. Sci. (2)

J. Zhang, W. Tian, F. Wu, Q. X. Wan, Z. J. Wang, J. Zhang, Y. L. Li, J. N. Dai, Y. Y. Fang, Z. H. Wu, C. Q. Chen, J. T. Xu, and X. Y. Li, “The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition,” Appl. Surf. Sci.307, 525–532 (2014).
[Crossref]

O. Lupan, T. Pauporte, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico, and I. M. Tiginyanu, “Comparative study of the ZnO and Zn1-xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN,” Appl. Surf. Sci.259, 399–405 (2012).
[Crossref]

CrystEngComm (1)

A. Redondo-Cubero, A. Hierro, J. M. Chauveau, K. Lorenz, G. Tabares, N. Franco, E. Alves, and E. Munoz, “Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents,” CrystEngComm14(5), 1637–1640 (2012).
[Crossref]

J. Alloy. Comp. (1)

J. N. Dai, X. Y. Han, Z. H. Wu, C. H. Yu, R. F. Xiang, Q. H. He, Y. H. Gao, C. Q. Chen, X. H. Xiao, and T. C. Peng, “Growth of non-polar ZnO films on a-GaN/r-Al2O3 templatesby radio-frequency magnetron sputtering,” J. Alloy. Comp.489(2), 519–522 (2010).
[Crossref]

J. Appl. Phys. (7)

I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys.94(11), 7336–7340 (2003).
[Crossref]

Y. Li, X. H. Pan, Y. Z. Zhang, H. P. He, J. Jiang, J. Y. Huang, C. L. Ye, and Z. Z. Ye, “Structure and optical properties of a-plane ZnO/Zn0.9Mg0.1O multiple quantum wells grown on r-plane sapphire substrates by pulsed laser deposition,” J. Appl. Phys.112(10), 103519 (2012).
[Crossref]

S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, “Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition,” J. Appl. Phys.101(8), 083521 (2007).
[Crossref]

P. G. Eliseev, “The red σ2/kT spectral shift in partially disordered semiconductors,” J. Appl. Phys.93(9), 5404–5415 (2003).
[Crossref]

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys.94(2), 973–978 (2003).
[Crossref]

K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, “Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates,” J. Appl. Phys.109(8), 083524 (2011).
[Crossref]

T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, “Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy,” J. Appl. Phys.105(2), 023505 (2009).
[Crossref]

J. Cryst. Growth (4)

M. Liang, Y. Ho, W. Wang, C. Peng, and L. Chang, “Growth of ZnMgO/ZnO films on r-plane sapphires by pulsed laser deposition,” J. Cryst. Growth310(7-9), 1847–1852 (2008).
[Crossref]

J. Zippel, M. Lorenz, M. Lange, M. Stolzel, G. Benndorf, and M. Grundmann, “Growth control of nonpolar and polar ZnO/MgxZn1-xO quantum wells by pulsed-laser deposition,” J. Cryst. Growth364, 81–87 (2013).
[Crossref]

K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications,” J. Cryst. Growth278(1-4), 288–292 (2005).
[Crossref]

Y. Zhang, G. Du, D. Liu, H. Zhu, Y. Cui, X. Dong, and S. Yang, “Structural and optical properties of MgxZn1-xO thin films grown by metal-organic chemical vapor deposition,” J. Cryst. Growth268(1-2), 140–143 (2004).
[Crossref]

J. Phys. D Appl. Phys. (2)

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys.41(12), 125104 (2008).
[Crossref]

Z. L. Liu, Z. X. Mei, R. Wang, J. M. Zhao, H. L. Liang, Y. Guo, A. Y. Kuznetsov, and X. L. Du, “Alloy-fluctuation-induced exciton localization in high-Mg-content (0.27≤x≤0.55) wurtzite MgxZn1-xO epilayers,” J. Phys. D Appl. Phys.43(28), 285402 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Semicond. Sci. Technol. (1)

J. M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, “Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy,” Semicond. Sci. Technol.23(3), 035005 (2008).
[Crossref]

Solid-State Electron. (1)

S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron.46(10), 1633–1637 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic design of the investigated samples. The a-plane MgZnO films were grown on (a) r-plane sapphire, (b) 700 °C a-GaN/r-sapphire templates, (c) 1000 °C a-GaN/r-sapphire templates using PLD under the same conditions.
Fig. 2
Fig. 2 (a) HRXRD 2theta/omega scanning curves of the a-plane MgZnO films grown on r-plane sapphire, 700°C a-GaN/r-sapphire templates and 1000°C a-GaN/r-sapphire templates. (b) Phi scanning curve of ( 10 1 ¯ 2 ) -GaN and ( 10 1 ¯ 2 ) -MgZnO for the sample c.
Fig. 3
Fig. 3 The FWHMs of symmetric XRCs of the samples a, b and c as a function of azimuthal angle φ.
Fig. 4
Fig. 4 (a) SEM image and (b) AFM image of the a-plane MgZnO films of the sample c.
Fig. 5
Fig. 5 Typical EDS spectrum recorded for the sample c.
Fig. 6
Fig. 6 Room-temperature (300K) photoluminescence (PL) spectra recorded for the samples a, b and c. The broadband emissions were magnified and shown in the inset.
Fig. 7
Fig. 7 (a)Temperature dependence of the band edge luminescence of the sample c. (b) Temperature-dependent near-band-edge emission shift of the sample c (black blocks) and the fitting curve of sample c plotted from the band-tail-filling model (red line).
Fig. 8
Fig. 8 Arrhenius plots of normalized integrated PL intensities from sample c.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E g (T)= E g (0) α T 2 T+β
E g (T)= E g (0) α T 2 T+β σ 2 kT
log { I ( T ) / I ( 10 ) } = ( 1 / T ) ( ε / k B ) log e + C

Metrics