Abstract

We compare the performance of metallic and dielectric thin film helix photonic metamaterial numerically. The simulated metal helix provides a 4 μm broad band circular dichroism with a polarization suppression ratio of 20:1. The transmission efficiency of the metal helix drops significantly with increasing number of helix turns and angle of incidence. Contraire, the simulated silicon dielectric helix structure provides an extremely high polarization suppression ratio above 2,300:1 with almost 100% transmission over a wide range of incident angles. The results provided highlights the trade-offs between the transmission efficiency and the specular and angular bandwidth for designing practical thin-film circular polarizers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband circularly polarizing dichroism with high efficient plasmonic helical surface

Jingpei Hu, Xiaonan Zhao, Ruibin Li, Aijiao Zhu, Linghua Chen, Yu Lin, Bing Cao, Xiaojun Zhu, and Chinhua Wang
Opt. Express 24(10) 11023-11032 (2016)

Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography

Johannes Kaschke and Martin Wegener
Opt. Lett. 40(17) 3986-3989 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50(3), 034004 (2011).
    [Crossref]
  2. G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
    [Crossref]
  3. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
    [Crossref] [PubMed]
  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  5. Z. Yang, M. Zhao, and P. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single-, double-, and multi-helical metamaterials,” in Proc. SPIE Vol, 2011, pp. 79331.
    [Crossref]
  6. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
    [Crossref] [PubMed]
  7. Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” Photonics Technology Letters, IEEE 22(17), 1303–1305 (2010).
    [Crossref]
  8. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1(4), 614–624 (2011).
    [Crossref]
  9. Y. K. Pang, J. Lee, H. Lee, W. Y. Tam, C. Chan, and P. Sheng, “Chiral microstructures (spirals) fabrication by holographic lithography,” Opt. Express 13(19), 7615–7620 (2005).
    [Crossref] [PubMed]
  10. Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16(8), 5186–5192 (2008).
    [Crossref] [PubMed]
  11. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
    [Crossref]
  12. K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
    [Crossref]
  13. N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express 19(S2Suppl 2), A118–A125 (2011).
    [Crossref] [PubMed]
  14. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [Crossref]
  15. X. Wang, W. Gao, J. Hung, and W. Y. Tam, “Optical activities of large-area SU8 microspirals fabricated by multibeam holographic lithography,” Appl. Opt. 53(11), 2425–2430 (2014).
    [Crossref] [PubMed]
  16. J. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13(20), 8083–8088 (2005).
    [Crossref] [PubMed]
  17. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10(12), 2581–2591 (1993).
    [Crossref]
  18. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
  20. K. C. Johnson, “Coupled scalar wave diffraction theory,” Appl. Phys. (Berl.) 24(3), 249–260 (1981).
    [Crossref]
  21. E. D. Palik, Handbook of Optical Constants of Solids: Index, vol. 3 (Elsevier, 1998).
  22. S. Makarov, Antenna and EM Modeling with MATLAB (Wiley-Interscience, 2002).
  23. M. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Math. Comput. Model. 34(12-13), 1483–1497 (2001).
    [Crossref]
  24. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
    [Crossref]

2014 (1)

2013 (1)

K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
[Crossref]

2011 (3)

2010 (2)

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” Photonics Technology Letters, IEEE 22(17), 1303–1305 (2010).
[Crossref]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

2006 (1)

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

2005 (3)

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

2001 (2)

M. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Math. Comput. Model. 34(12-13), 1483–1497 (2001).
[Crossref]

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
[Crossref] [PubMed]

1996 (1)

1993 (1)

1981 (2)

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).

K. C. Johnson, “Coupled scalar wave diffraction theory,” Appl. Phys. (Berl.) 24(3), 249–260 (1981).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Balasundaram, K.

K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
[Crossref]

Bhattacharya, K.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50(3), 034004 (2011).
[Crossref]

Burger, S.

Chakraborty, A. K.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50(3), 034004 (2011).
[Crossref]

Chan, C.

Chidichimo, G.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

De Filpo, G.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Fischer, J.

Gansel, J. K.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Gao, W.

Gaylord, T. K.

Hayashi, K.

Hermatschweiler, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Hung, J.

Hwangbo, C. K.

Ijiro, T.

John, S.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Johnson, K. C.

K. C. Johnson, “Coupled scalar wave diffraction theory,” Appl. Phys. (Berl.) 24(3), 249–260 (1981).
[Crossref]

Lee, H.

Lee, J.

Li, L.

Li, X.

K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
[Crossref]

Linden, S.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Lu, P.

Z. Yang, M. Zhao, and P. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single-, double-, and multi-helical metamaterials,” in Proc. SPIE Vol, 2011, pp. 79331.
[Crossref]

Lu, P. X.

Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” Photonics Technology Letters, IEEE 22(17), 1303–1305 (2010).
[Crossref]

Magnusson, R.

Masuda, H.

McCall, M.

M. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Math. Comput. Model. 34(12-13), 1483–1497 (2001).
[Crossref]

Moharam, M. G.

Mohseni, P. K.

K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
[Crossref]

Nicoletta, F. P.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Okamoto, E.

Ozin, G. A.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Pang, Y. K.

Park, Y. J.

Pérez-Willard, F.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Saha, A.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50(3), 034004 (2011).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Sheng, P.

Shuai, Y.-C.

K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
[Crossref]

Sobahan, K. M. A.

Tam, W. Y.

Tétreault, N.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Tibuleac, S.

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Wang, X.

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1(4), 614–624 (2011).
[Crossref]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Yamada, N.

Yang, Z.

Z. Yang, M. Zhao, and P. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single-, double-, and multi-helical metamaterials,” in Proc. SPIE Vol, 2011, pp. 79331.
[Crossref]

Yang, Z. Y.

Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” Photonics Technology Letters, IEEE 22(17), 1303–1305 (2010).
[Crossref]

Zhao, D.

K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
[Crossref]

Zhao, M.

Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” Photonics Technology Letters, IEEE 22(17), 1303–1305 (2010).
[Crossref]

Z. Yang, M. Zhao, and P. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single-, double-, and multi-helical metamaterials,” in Proc. SPIE Vol, 2011, pp. 79331.
[Crossref]

Zhou, W.

K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
[Crossref]

Adv. Mater. (3)

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

K. C. Johnson, “Coupled scalar wave diffraction theory,” Appl. Phys. (Berl.) 24(3), 249–260 (1981).
[Crossref]

Appl. Phys. Lett. (1)

K. Balasundaram, P. K. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” Appl. Phys. Lett. 103(21), 214103 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Math. Comput. Model. (1)

M. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Math. Comput. Model. 34(12-13), 1483–1497 (2001).
[Crossref]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Opt. Eng. (1)

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50(3), 034004 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Photonics Technology Letters, IEEE (1)

Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” Photonics Technology Letters, IEEE 22(17), 1303–1305 (2010).
[Crossref]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Other (3)

Z. Yang, M. Zhao, and P. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single-, double-, and multi-helical metamaterials,” in Proc. SPIE Vol, 2011, pp. 79331.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids: Index, vol. 3 (Elsevier, 1998).

S. Makarov, Antenna and EM Modeling with MATLAB (Wiley-Interscience, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of (a) silicon dielectric helix and (b) gold metal helix photonic metamaterial on glass substrate. The helix comprises of square lattice with period (a), major radius (R), helix wire radius (r), pitch (p), number of turns (N) and incident angle (θ)
Fig. 2
Fig. 2 Simulated transmission for the left circularly polarized light and the right circularly polarized light for 1 turn, 2 turns and 3 turns of the (a – c) gold metal and (d – f) silicon dielectric helix respectively. The inset shows the schematic of the simulated helix.
Fig. 3
Fig. 3 Simulated polarization suppression ratio in semi log scale for the (a) gold metal and (b) silicon dielectric helix photonic metamaterial.
Fig. 4
Fig. 4 Simulated transmission for the left circularly polarized light, right circularly polarized light and polarization suppression ratio for various incident angles for (a – c) the gold metal and (d – f) silicon dielectric helix photonic metamaterial.
Fig. 5
Fig. 5 Simulated transmission for (a) the left circularly polarized light, (b) the right circularly polarized light, and (c) the polarization suppression ratio of the silicon dielectric helix photonic metamaterial.

Tables (1)

Tables Icon

Table 1 Performance comparison between silicon helix on glass and metal helix on glass.

Metrics