Abstract

The electro-optical properties of the chiral nematic liquid crystal cell, driven by in-plane switching and non-uniform vertical electric fields, are investigated. The Bragg reflection, threshold voltage, and helical configuration are significantly related with the chiral dopant concentration. Through the driving-mode switching, two bistable helical structures without holding voltages are developed. The behavior of voltage- and temperature-dependent light reflection associated with the helical structure transition is also revealed. A fast bistable switching response (~5 ms) is successfully achieved by the three-terminal-electrode architecture. Further, the proposed cell shows a display time of over 6 hr in the unplugged power state.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks

Guan-Jhong Lin, Tien-Jung Chen, Bo-Yu Chen, Jin-Jei Wu, and Ying-Jay Yang
Opt. Mater. Express 4(8) 1657-1667 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  2. S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
    [Crossref]
  3. E. M. Korenic, S. D. Jacobs, S. M. Faris, and L. Li, “Color gamut of cholesteric liquid crystal films and flakes by standard colorimetry,” Color Res. Appl. 23(4), 210–220 (1998).
    [Crossref]
  4. P. G. de Gennes and J. Prost, The Principle of Liquid Crystals (Oxford, 1993)
  5. P. N. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8(1), 315–326 Vol. 8, (1969).
  6. G. D. Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
    [Crossref]
  7. H. Xianyu, T. H. Lin, and S. T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
    [Crossref]
  8. H. H. Lee, J. S. Yu, J. H. Kim, S. I. Yamamoto, and H. Kikuchi, “Fast electro-optic device controlled by dielectric response of planarly aligned cholesteric liquid crystals,” J. Appl. Phys. 106(1), 014503 (2009).
    [Crossref]
  9. B. J. Broughton, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Optimized flexoelectric response in a chiral liquid-crystal phase device,” J. Appl. Phys. 98(3), 034109 (2005).
    [Crossref]
  10. S. H. Kim, L. C. Chien, and L. Komitov, “Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network,” Appl. Phys. Lett. 86(16), 161118 (2005).
    [Crossref]
  11. F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
    [Crossref] [PubMed]
  12. H. Coles, S. Morris, F. Castles, D. Gardiner, and Q. Malik, “Ultrafast high optical contrast flexoelectric displays for video frame rates,” SID Int. Symp. Dig. Tech. Pap. 43(1), 544–547 (2012).
  13. G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
    [Crossref]
  14. F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, “Ultra-fast-switching flexoelectric liquid-crystal display with high contrast,” J. Soc. Inf. Disp. 18(2), 128–133 (2010).
    [Crossref]
  15. F. Ahmad, M. Jamil, and Y. J. Jeon, “Current trends in studies on reverse-mode polymer dispersed liquid-crystal films – a review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
    [Crossref]
  16. H. Xianyu, K. M. Chen, and S. T. Wu, “Flexible area-color reflective displays based on electric-field-induced blueshift in a cholesteric liquid-crystal film,” J. Soc. Inf. Disp. 16(1), 125–128 (2008).
    [Crossref]
  17. W. Greubel, U. Wolff, and H. Kruger, “Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 24(1), 103–111 (1973).
    [Crossref]
  18. A. Mochizuki and S. Kobayashi, “Surface effect on the threshold electric fields of cholesteric-nematic phase transition and its reverse process,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 225(1), 89–98 (1993).
    [Crossref]
  19. C. Y. Huang, K. Y. Fu, K. Y. Lo, and M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
    [Crossref] [PubMed]
  20. D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
    [Crossref]
  21. J. Ma, L. Shi, and D. K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
    [Crossref]
  22. C. T. Wang and T. H. Lin, “Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal,” Opt. Mater. Express 1(8), 1457–1462 (2011).
    [Crossref]
  23. C. T. Wang, W. Y. Wang, and T. H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
    [Crossref]
  24. P. Kumar, S. W. Kang, and S. H. Lee, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121–1134 (2012).
    [Crossref]
  25. C. T. Wang and T. H. Lin, “Vertically integrated transflective liquid crystal display using multi-stable cholesteric liquid crystal film,” J. Disp. Technol. 8(10), 613–616 (2012).
    [Crossref]
  26. A. M. P. Smith, C. C. Wu, C. S. Wang, T. L. Chiu, J. Y. Lee, and J. H. Lee, “Multi-stable LCD with dual-frequency reverse-mode polymer stabilized cholesteric texture,” SID Int. Symp. Dig. Tech. Pap. 44(1), 264–266, (2013).
  27. S. H. Kim, L. Shi, and L. C. Chien, “Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network,” J. Phys. D Appl. Phys. 42(19), 195102 (2009).
    [Crossref]
  28. G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
    [Crossref]
  29. W. L. Hsu, J. Ma, G. Myhre, K. Balakrishnan, and S. Pau, “Patterned cholesteric liquid crystal polymer film,” J. Opt. Soc. Am. A 30(2), 252–258 (2013).
    [Crossref] [PubMed]
  30. J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20(2), 024212 (2011).
    [Crossref]
  31. K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
    [Crossref]
  32. Y. Cui and D. K. Yang, “Encapsulated polymer stabilized cholesteric texture light shutter,” SID Int. Symp. Dig. Tech. Pap. 43(1), 1466–1469 (2012).
    [Crossref]
  33. C. Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B 86(1), 123–127 (2006).
    [Crossref]
  34. S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
    [Crossref]
  35. K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
    [Crossref]
  36. Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-Free, Microsecond Electro-Optic Tuning of Liquid Crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
    [Crossref]
  37. M. Mohammadimasoudi, J. Beeckman, J. Shin, K. Lee, and K. Neyts, “Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time,” Opt. Express 22(16), 19098–19107 (2014).
    [Crossref] [PubMed]
  38. V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).
  39. A. Y. G. Fuh, Z. H. Wu, K. T. Cheng, C. K. Liu, and Y. D. Chen, “Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals,” Opt. Express 21(19), 21840–21846 (2013).
    [Crossref] [PubMed]
  40. K. S. Bae, Y. J. Jang, C. J. Yu, J. E. Jang, J. E. Jung, J. S. Choi, S. J. Park, and J. H. Kim, “Multi-color cholesteric liquid crystal film by fixing helical pitch with reactive mesogen,” SID Int. Symp. Dig. Tech. Pap. 41(1), 1755–1757 (2010).
    [Crossref]
  41. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).
  42. B. H. Yu, J. W. Huh, K. H. Kim, and T. H. Yoon, “Light shutter using dichroic-dye-doped long-pitch cholesteric liquid crystals,” Opt. Express 21(24), 29332–29337 (2013).
    [Crossref] [PubMed]
  43. D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
    [Crossref]
  44. K. H. Kim, B. H. Yu, S. W. Choi, S. W. Oh, and T. H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
    [Crossref] [PubMed]
  45. C. C. Li, H. Y. Tseng, T. W. Pai, Y. C. Wu, W. H. Hsu, H. C. Jau, C. W. Chen, and T. H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
    [Crossref] [PubMed]
  46. J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
    [Crossref]
  47. S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95(19), 193502 (2009).
    [Crossref]
  48. D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
    [Crossref]
  49. A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
    [Crossref]
  50. N. Tamaoki, “cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
    [Crossref]
  51. S. W. Ko, S. H. Huang, A. Y. Fuh, and T. H. Lin, “Measurement of helical twisting power based on axially symmetrical photo-aligned dye-doped liquid crystal film,” Opt. Express 17(18), 15926–15931 (2009).
    [Crossref] [PubMed]
  52. J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
    [Crossref]
  53. A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 1), 031704 (2005).
    [Crossref] [PubMed]
  54. T. Yu, L. Luo, B. Feng, and X. Shang, “Anchoring effect on the stability of a cholesteric liquid crystal’s focal conic texture,” Chin. J. Physiol. 50(5), 804–815 (2012).
  55. T. N. Orlova, R. I. Iegorov, and A. D. Kiselev, “Light-induced pitch transitions in photosensitive cholesteric liquid crystals: effects of anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012503 (2014).
    [Crossref] [PubMed]

2014 (6)

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current trends in studies on reverse-mode polymer dispersed liquid-crystal films – a review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

M. Mohammadimasoudi, J. Beeckman, J. Shin, K. Lee, and K. Neyts, “Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time,” Opt. Express 22(16), 19098–19107 (2014).
[Crossref] [PubMed]

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

C. C. Li, H. Y. Tseng, T. W. Pai, Y. C. Wu, W. H. Hsu, H. C. Jau, C. W. Chen, and T. H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref] [PubMed]

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

T. N. Orlova, R. I. Iegorov, and A. D. Kiselev, “Light-induced pitch transitions in photosensitive cholesteric liquid crystals: effects of anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012503 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (6)

K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
[Crossref]

P. Kumar, S. W. Kang, and S. H. Lee, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121–1134 (2012).
[Crossref]

C. T. Wang and T. H. Lin, “Vertically integrated transflective liquid crystal display using multi-stable cholesteric liquid crystal film,” J. Disp. Technol. 8(10), 613–616 (2012).
[Crossref]

K. H. Kim, B. H. Yu, S. W. Choi, S. W. Oh, and T. H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
[Crossref] [PubMed]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

T. Yu, L. Luo, B. Feng, and X. Shang, “Anchoring effect on the stability of a cholesteric liquid crystal’s focal conic texture,” Chin. J. Physiol. 50(5), 804–815 (2012).

2011 (5)

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20(2), 024212 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).

C. T. Wang and T. H. Lin, “Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal,” Opt. Mater. Express 1(8), 1457–1462 (2011).
[Crossref]

C. T. Wang, W. Y. Wang, and T. H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

2010 (4)

F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, “Ultra-fast-switching flexoelectric liquid-crystal display with high contrast,” J. Soc. Inf. Disp. 18(2), 128–133 (2010).
[Crossref]

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

J. Ma, L. Shi, and D. K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[Crossref]

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
[Crossref]

2009 (7)

S. H. Kim, L. Shi, and L. C. Chien, “Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network,” J. Phys. D Appl. Phys. 42(19), 195102 (2009).
[Crossref]

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

H. H. Lee, J. S. Yu, J. H. Kim, S. I. Yamamoto, and H. Kikuchi, “Fast electro-optic device controlled by dielectric response of planarly aligned cholesteric liquid crystals,” J. Appl. Phys. 106(1), 014503 (2009).
[Crossref]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

S. W. Ko, S. H. Huang, A. Y. Fuh, and T. H. Lin, “Measurement of helical twisting power based on axially symmetrical photo-aligned dye-doped liquid crystal film,” Opt. Express 17(18), 15926–15931 (2009).
[Crossref] [PubMed]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95(19), 193502 (2009).
[Crossref]

2008 (1)

H. Xianyu, K. M. Chen, and S. T. Wu, “Flexible area-color reflective displays based on electric-field-induced blueshift in a cholesteric liquid-crystal film,” J. Soc. Inf. Disp. 16(1), 125–128 (2008).
[Crossref]

2007 (2)

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[Crossref]

2006 (3)

C. Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B 86(1), 123–127 (2006).
[Crossref]

D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

H. Xianyu, T. H. Lin, and S. T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

2005 (4)

G. D. Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

B. J. Broughton, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Optimized flexoelectric response in a chiral liquid-crystal phase device,” J. Appl. Phys. 98(3), 034109 (2005).
[Crossref]

S. H. Kim, L. C. Chien, and L. Komitov, “Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network,” Appl. Phys. Lett. 86(16), 161118 (2005).
[Crossref]

A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 1), 031704 (2005).
[Crossref] [PubMed]

2003 (1)

2001 (1)

N. Tamaoki, “cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[Crossref]

1998 (2)

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

E. M. Korenic, S. D. Jacobs, S. M. Faris, and L. Li, “Color gamut of cholesteric liquid crystal films and flakes by standard colorimetry,” Color Res. Appl. 23(4), 210–220 (1998).
[Crossref]

1993 (1)

A. Mochizuki and S. Kobayashi, “Surface effect on the threshold electric fields of cholesteric-nematic phase transition and its reverse process,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 225(1), 89–98 (1993).
[Crossref]

1973 (1)

W. Greubel, U. Wolff, and H. Kruger, “Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 24(1), 103–111 (1973).
[Crossref]

1969 (1)

P. N. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8(1), 315–326 Vol. 8, (1969).

Ahmad, F.

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current trends in studies on reverse-mode polymer dispersed liquid-crystal films – a review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

Bae, K. S.

K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
[Crossref]

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Bailey, C. A.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Balakrishnan, K.

Barberi, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).

Bartolino, R.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Beeckman, J.

Blatch, A. E.

B. J. Broughton, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Optimized flexoelectric response in a chiral liquid-crystal phase device,” J. Appl. Phys. 98(3), 034109 (2005).
[Crossref]

Broughton, B. J.

B. J. Broughton, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Optimized flexoelectric response in a chiral liquid-crystal phase device,” J. Appl. Phys. 98(3), 034109 (2005).
[Crossref]

Bunning, T. J.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Carbone, G.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Castles, F.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, “Ultra-fast-switching flexoelectric liquid-crystal display with high contrast,” J. Soc. Inf. Disp. 18(2), 128–133 (2010).
[Crossref]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95(19), 193502 (2009).
[Crossref]

Cha, U.

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Chanishvili, A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).

Chen, C. W.

Chen, J.

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[Crossref]

Chen, K. M.

H. Xianyu, K. M. Chen, and S. T. Wu, “Flexible area-color reflective displays based on electric-field-induced blueshift in a cholesteric liquid-crystal film,” J. Soc. Inf. Disp. 16(1), 125–128 (2008).
[Crossref]

Chen, Y. D.

Cheng, K. T.

Chidichimo, G.

G. D. Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Chien, L. C.

S. H. Kim, L. Shi, and L. C. Chien, “Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network,” J. Phys. D Appl. Phys. 42(19), 195102 (2009).
[Crossref]

S. H. Kim, L. C. Chien, and L. Komitov, “Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network,” Appl. Phys. Lett. 86(16), 161118 (2005).
[Crossref]

Chien, L.-C.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Chih, Y. S.

C. Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B 86(1), 123–127 (2006).
[Crossref]

Chilaya, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).

Choi, S. S.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95(19), 193502 (2009).
[Crossref]

Choi, S. W.

Chung, I. J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

Clarke, M. J.

B. J. Broughton, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Optimized flexoelectric response in a chiral liquid-crystal phase device,” J. Appl. Phys. 98(3), 034109 (2005).
[Crossref]

Coles, H. J.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, “Ultra-fast-switching flexoelectric liquid-crystal display with high contrast,” J. Soc. Inf. Disp. 18(2), 128–133 (2010).
[Crossref]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95(19), 193502 (2009).
[Crossref]

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[Crossref]

B. J. Broughton, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Optimized flexoelectric response in a chiral liquid-crystal phase device,” J. Appl. Phys. 98(3), 034109 (2005).
[Crossref]

Elston, S. J.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Faris, S. M.

E. M. Korenic, S. D. Jacobs, S. M. Faris, and L. Li, “Color gamut of cholesteric liquid crystal films and flakes by standard colorimetry,” Color Res. Appl. 23(4), 210–220 (1998).
[Crossref]

Feng, B.

T. Yu, L. Luo, B. Feng, and X. Shang, “Anchoring effect on the stability of a cholesteric liquid crystal’s focal conic texture,” Chin. J. Physiol. 50(5), 804–815 (2012).

Ferjani, S.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Filpo, G. D.

G. D. Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Fu, K. Y.

Fuh, A. Y.

Fuh, A. Y. G.

Gandhi, J. V.

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Gardiner, D. J.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, “Ultra-fast-switching flexoelectric liquid-crystal display with high contrast,” J. Soc. Inf. Disp. 18(2), 128–133 (2010).
[Crossref]

Greubel, W.

W. Greubel, U. Wolff, and H. Kruger, “Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 24(1), 103–111 (1973).
[Crossref]

Hands, P. J. W.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Hegde, G.

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
[Crossref]

Hsu, W. H.

Hsu, W. L.

Huang, C. Y.

C. Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B 86(1), 123–127 (2006).
[Crossref]

C. Y. Huang, K. Y. Fu, K. Y. Lo, and M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
[Crossref] [PubMed]

Huang, S. H.

Huh, J. W.

Iegorov, R. I.

T. N. Orlova, R. I. Iegorov, and A. D. Kiselev, “Light-induced pitch transitions in photosensitive cholesteric liquid crystals: effects of anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012503 (2014).
[Crossref] [PubMed]

Inoue, Y.

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-Free, Microsecond Electro-Optic Tuning of Liquid Crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

Jacobs, S. D.

E. M. Korenic, S. D. Jacobs, S. M. Faris, and L. Li, “Color gamut of cholesteric liquid crystal films and flakes by standard colorimetry,” Color Res. Appl. 23(4), 210–220 (1998).
[Crossref]

Jamil, M.

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current trends in studies on reverse-mode polymer dispersed liquid-crystal films – a review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

Jang, J. E.

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Jang, Y. J.

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Jau, H. C.

Jeon, Y. J.

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current trends in studies on reverse-mode polymer dispersed liquid-crystal films – a review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

Jung, J. E.

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Jung, S. M.

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

Kang, I. B.

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

Kang, S. G.

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Kang, S. W.

Ke, S. W.

C. Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B 86(1), 123–127 (2006).
[Crossref]

Keating, P. N.

P. N. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8(1), 315–326 Vol. 8, (1969).

Kikuchi, H.

H. H. Lee, J. S. Yu, J. H. Kim, S. I. Yamamoto, and H. Kikuchi, “Fast electro-optic device controlled by dielectric response of planarly aligned cholesteric liquid crystals,” J. Appl. Phys. 106(1), 014503 (2009).
[Crossref]

Kim, J. H.

K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
[Crossref]

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

H. H. Lee, J. S. Yu, J. H. Kim, S. I. Yamamoto, and H. Kikuchi, “Fast electro-optic device controlled by dielectric response of planarly aligned cholesteric liquid crystals,” J. Appl. Phys. 106(1), 014503 (2009).
[Crossref]

Kim, K. H.

Kim, M.

K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
[Crossref]

Kim, S. H.

S. H. Kim, L. Shi, and L. C. Chien, “Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network,” J. Phys. D Appl. Phys. 42(19), 195102 (2009).
[Crossref]

S. H. Kim, L. C. Chien, and L. Komitov, “Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network,” Appl. Phys. Lett. 86(16), 161118 (2005).
[Crossref]

Kim, W. S.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

Kim, Y.

K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
[Crossref]

Kiselev, A. D.

T. N. Orlova, R. I. Iegorov, and A. D. Kiselev, “Light-induced pitch transitions in photosensitive cholesteric liquid crystals: effects of anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012503 (2014).
[Crossref] [PubMed]

A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 1), 031704 (2005).
[Crossref] [PubMed]

Ko, S. W.

Kobayashi, S.

A. Mochizuki and S. Kobayashi, “Surface effect on the threshold electric fields of cholesteric-nematic phase transition and its reverse process,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 225(1), 89–98 (1993).
[Crossref]

Komitov, L.

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
[Crossref]

S. H. Kim, L. C. Chien, and L. Komitov, “Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network,” Appl. Phys. Lett. 86(16), 161118 (2005).
[Crossref]

Korenic, E. M.

E. M. Korenic, S. D. Jacobs, S. M. Faris, and L. Li, “Color gamut of cholesteric liquid crystal films and flakes by standard colorimetry,” Color Res. Appl. 23(4), 210–220 (1998).
[Crossref]

Kruger, H.

W. Greubel, U. Wolff, and H. Kruger, “Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 24(1), 103–111 (1973).
[Crossref]

Kubo, H.

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-Free, Microsecond Electro-Optic Tuning of Liquid Crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

Kumar, P.

Lee, H. H.

H. H. Lee, J. S. Yu, J. H. Kim, S. I. Yamamoto, and H. Kikuchi, “Fast electro-optic device controlled by dielectric response of planarly aligned cholesteric liquid crystals,” J. Appl. Phys. 106(1), 014503 (2009).
[Crossref]

Lee, K.

Lee, M.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Lee, S. C.

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

Lee, S. H.

Li, C. C.

Li, L.

E. M. Korenic, S. D. Jacobs, S. M. Faris, and L. Li, “Color gamut of cholesteric liquid crystal films and flakes by standard colorimetry,” Color Res. Appl. 23(4), 210–220 (1998).
[Crossref]

Lin, T. H.

C. C. Li, H. Y. Tseng, T. W. Pai, Y. C. Wu, W. H. Hsu, H. C. Jau, C. W. Chen, and T. H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref] [PubMed]

C. T. Wang and T. H. Lin, “Vertically integrated transflective liquid crystal display using multi-stable cholesteric liquid crystal film,” J. Disp. Technol. 8(10), 613–616 (2012).
[Crossref]

C. T. Wang, W. Y. Wang, and T. H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

C. T. Wang and T. H. Lin, “Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal,” Opt. Mater. Express 1(8), 1457–1462 (2011).
[Crossref]

S. W. Ko, S. H. Huang, A. Y. Fuh, and T. H. Lin, “Measurement of helical twisting power based on axially symmetrical photo-aligned dye-doped liquid crystal film,” Opt. Express 17(18), 15926–15931 (2009).
[Crossref] [PubMed]

H. Xianyu, T. H. Lin, and S. T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

Liu, C. K.

Liu, Y. G.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20(2), 024212 (2011).
[Crossref]

Lo, K. Y.

Lorenz, A.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

Lu, S.-Y.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Luo, L.

T. Yu, L. Luo, B. Feng, and X. Shang, “Anchoring effect on the stability of a cholesteric liquid crystal’s focal conic texture,” Chin. J. Physiol. 50(5), 804–815 (2012).

Ma, J.

W. L. Hsu, J. Ma, G. Myhre, K. Balakrishnan, and S. Pau, “Patterned cholesteric liquid crystal polymer film,” J. Opt. Soc. Am. A 30(2), 252–258 (2013).
[Crossref] [PubMed]

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20(2), 024212 (2011).
[Crossref]

J. Ma, L. Shi, and D. K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[Crossref]

Malik, Q. M.

F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, “Ultra-fast-switching flexoelectric liquid-crystal display with high contrast,” J. Soc. Inf. Disp. 18(2), 128–133 (2010).
[Crossref]

Matranga, M. A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).

Mcconney, M. E.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Mi, X. D.

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Mochizuki, A.

A. Mochizuki and S. Kobayashi, “Surface effect on the threshold electric fields of cholesteric-nematic phase transition and its reverse process,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 225(1), 89–98 (1993).
[Crossref]

Mohammadimasoudi, M.

Moon, Y. K.

K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
[Crossref]

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Morris, S. M.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, “Ultra-fast-switching flexoelectric liquid-crystal display with high contrast,” J. Soc. Inf. Disp. 18(2), 128–133 (2010).
[Crossref]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95(19), 193502 (2009).
[Crossref]

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[Crossref]

Myhre, G.

Natarajan, L. V.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Nemati, H.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Neyts, K.

Nicoletta, F. P.

G. D. Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Oh, S. W.

Orlova, T. N.

T. N. Orlova, R. I. Iegorov, and A. D. Kiselev, “Light-induced pitch transitions in photosensitive cholesteric liquid crystals: effects of anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012503 (2014).
[Crossref] [PubMed]

Ozaki, M.

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-Free, Microsecond Electro-Optic Tuning of Liquid Crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

Pai, T. W.

Park, H. J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Park, J. U.

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

Pau, S.

Petriashvili, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).

Qasim, M. M.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Raynes, P.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Salter, P.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Santo, M. P. d.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).

Seok Choi, S.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

Shang, X.

T. Yu, L. Luo, B. Feng, and X. Shang, “Anchoring effect on the stability of a cholesteric liquid crystal’s focal conic texture,” Chin. J. Physiol. 50(5), 804–815 (2012).

Shi, L.

J. Ma, L. Shi, and D. K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[Crossref]

S. H. Kim, L. Shi, and L. C. Chien, “Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network,” J. Phys. D Appl. Phys. 42(19), 195102 (2009).
[Crossref]

Shin, J.

Sio, L. D.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Sluckin, T. J.

A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 1), 031704 (2005).
[Crossref] [PubMed]

Strangi, G.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Tamaoki, N.

N. Tamaoki, “cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[Crossref]

Tondiglia, V. P.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Tsai, M. S.

Tseng, H. Y.

Umeton, C.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Wang, C. T.

C. T. Wang and T. H. Lin, “Vertically integrated transflective liquid crystal display using multi-stable cholesteric liquid crystal film,” J. Disp. Technol. 8(10), 613–616 (2012).
[Crossref]

C. T. Wang, W. Y. Wang, and T. H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

C. T. Wang and T. H. Lin, “Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal,” Opt. Mater. Express 1(8), 1457–1462 (2011).
[Crossref]

Wang, W. Y.

C. T. Wang, W. Y. Wang, and T. H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

White, T. J.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Wilkinson, T. D.

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[Crossref]

Wolff, U.

W. Greubel, U. Wolff, and H. Kruger, “Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 24(1), 103–111 (1973).
[Crossref]

Wu, S. T.

H. Xianyu, K. M. Chen, and S. T. Wu, “Flexible area-color reflective displays based on electric-field-induced blueshift in a cholesteric liquid-crystal film,” J. Soc. Inf. Disp. 16(1), 125–128 (2008).
[Crossref]

H. Xianyu, T. H. Lin, and S. T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

Wu, Y. C.

Wu, Z. H.

Xianyu, H.

H. Xianyu, K. M. Chen, and S. T. Wu, “Flexible area-color reflective displays based on electric-field-induced blueshift in a cholesteric liquid-crystal film,” J. Soc. Inf. Disp. 16(1), 125–128 (2008).
[Crossref]

H. Xianyu, T. H. Lin, and S. T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

Xuan, L.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20(2), 024212 (2011).
[Crossref]

Yamamoto, S. I.

H. H. Lee, J. S. Yu, J. H. Kim, S. I. Yamamoto, and H. Kikuchi, “Fast electro-optic device controlled by dielectric response of planarly aligned cholesteric liquid crystals,” J. Appl. Phys. 106(1), 014503 (2009).
[Crossref]

Yang, D. K.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

J. Ma, L. Shi, and D. K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[Crossref]

D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Yang, M. S.

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

Yoon, T. H.

Yoshida, H.

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-Free, Microsecond Electro-Optic Tuning of Liquid Crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

Yu, B. H.

Yu, C. J.

K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
[Crossref]

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Yu, J. S.

H. H. Lee, J. S. Yu, J. H. Kim, S. I. Yamamoto, and H. Kikuchi, “Fast electro-optic device controlled by dielectric response of planarly aligned cholesteric liquid crystals,” J. Appl. Phys. 106(1), 014503 (2009).
[Crossref]

Yu, T.

T. Yu, L. Luo, B. Feng, and X. Shang, “Anchoring effect on the stability of a cholesteric liquid crystal’s focal conic texture,” Chin. J. Physiol. 50(5), 804–815 (2012).

Zheng, Z. G.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20(2), 024212 (2011).
[Crossref]

Zola, R.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

Adv. Mater. (2)

G. D. Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

N. Tamaoki, “cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[Crossref]

Adv. Opt. Mater. (1)

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-Free, Microsecond Electro-Optic Tuning of Liquid Crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B 86(1), 123–127 (2006).
[Crossref]

Appl. Phys. Express (1)

J. Ma, L. Shi, and D. K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[Crossref]

Appl. Phys. Lett. (11)

C. T. Wang, W. Y. Wang, and T. H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96(11), 113503 (2010).
[Crossref]

H. Xianyu, T. H. Lin, and S. T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

S. H. Kim, L. C. Chien, and L. Komitov, “Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network,” Appl. Phys. Lett. 86(16), 161118 (2005).
[Crossref]

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[Crossref]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95(19), 193502 (2009).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, F. Castles, M. M. Qasim, W. S. Kim, S. Seok Choi, T. D. Wilkinson, and H. J. Coles, “Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect,” Appl. Phys. Lett. 100(6), 063501 (2012).
[Crossref]

A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Chin. J. Physiol. (1)

T. Yu, L. Luo, B. Feng, and X. Shang, “Anchoring effect on the stability of a cholesteric liquid crystal’s focal conic texture,” Chin. J. Physiol. 50(5), 804–815 (2012).

Chin. Phys. B (1)

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20(2), 024212 (2011).
[Crossref]

Color Res. Appl. (1)

E. M. Korenic, S. D. Jacobs, S. M. Faris, and L. Li, “Color gamut of cholesteric liquid crystal films and flakes by standard colorimetry,” Color Res. Appl. 23(4), 210–220 (1998).
[Crossref]

Electron. Mater. Lett. (1)

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current trends in studies on reverse-mode polymer dispersed liquid-crystal films – a review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

J. Appl. Phys. (2)

H. H. Lee, J. S. Yu, J. H. Kim, S. I. Yamamoto, and H. Kikuchi, “Fast electro-optic device controlled by dielectric response of planarly aligned cholesteric liquid crystals,” J. Appl. Phys. 106(1), 014503 (2009).
[Crossref]

B. J. Broughton, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Optimized flexoelectric response in a chiral liquid-crystal phase device,” J. Appl. Phys. 98(3), 034109 (2005).
[Crossref]

J. Disp. Technol. (2)

C. T. Wang and T. H. Lin, “Vertically integrated transflective liquid crystal display using multi-stable cholesteric liquid crystal film,” J. Disp. Technol. 8(10), 613–616 (2012).
[Crossref]

D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

S. H. Kim, L. Shi, and L. C. Chien, “Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network,” J. Phys. D Appl. Phys. 42(19), 195102 (2009).
[Crossref]

J. Soc. Inf. Disp. (3)

K. S. Bae, M. Kim, Y. K. Moon, Y. Kim, C. J. Yu, and J. H. Kim, “Flexible bistable chiral nematic liquid crystal display with enhanced memory characteristic by surface treatment,” J. Soc. Inf. Disp. 20(9), 547–550 (2012).
[Crossref]

H. Xianyu, K. M. Chen, and S. T. Wu, “Flexible area-color reflective displays based on electric-field-induced blueshift in a cholesteric liquid-crystal film,” J. Soc. Inf. Disp. 16(1), 125–128 (2008).
[Crossref]

F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, “Ultra-fast-switching flexoelectric liquid-crystal display with high contrast,” J. Soc. Inf. Disp. 18(2), 128–133 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. S. Bae, Y. J. Jang, Y. K. Moon, S. G. Kang, U. Cha, C. J. Yu, J. E. Jang, J. E. Jung, and J. H. Kim, “Multicolor cholesteric liquid crystal display in a single-layered configuration using a multi-pitch stabilizations,” Jpn. J. Appl. Phys. 49(8), 084103 (2010).
[Crossref]

Mater. Sci. Appl. (1)

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M. P. d. Santo, and M. A. Matranga, “Different approaches of employing cholesteric liquid crystals in dye lasers,” Mater. Sci. Appl. 2(2), 116–129 (2011).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (3)

P. N. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8(1), 315–326 Vol. 8, (1969).

W. Greubel, U. Wolff, and H. Kruger, “Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 24(1), 103–111 (1973).
[Crossref]

A. Mochizuki and S. Kobayashi, “Surface effect on the threshold electric fields of cholesteric-nematic phase transition and its reverse process,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 225(1), 89–98 (1993).
[Crossref]

Opt. Express (6)

Opt. Mater. Express (3)

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. Mcconney, M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 24(22), 6260–6276 (2014).

C. T. Wang and T. H. Lin, “Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal,” Opt. Mater. Express 1(8), 1457–1462 (2011).
[Crossref]

P. Kumar, S. W. Kang, and S. H. Lee, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121–1134 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 1), 031704 (2005).
[Crossref] [PubMed]

T. N. Orlova, R. I. Iegorov, and A. D. Kiselev, “Light-induced pitch transitions in photosensitive cholesteric liquid crystals: effects of anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012503 (2014).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

SID Int. Symp. (1)

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Int. Symp. 40(1), 348–351 (2009).
[Crossref]

Other (6)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

P. G. de Gennes and J. Prost, The Principle of Liquid Crystals (Oxford, 1993)

H. Coles, S. Morris, F. Castles, D. Gardiner, and Q. Malik, “Ultrafast high optical contrast flexoelectric displays for video frame rates,” SID Int. Symp. Dig. Tech. Pap. 43(1), 544–547 (2012).

A. M. P. Smith, C. C. Wu, C. S. Wang, T. L. Chiu, J. Y. Lee, and J. H. Lee, “Multi-stable LCD with dual-frequency reverse-mode polymer stabilized cholesteric texture,” SID Int. Symp. Dig. Tech. Pap. 44(1), 264–266, (2013).

Y. Cui and D. K. Yang, “Encapsulated polymer stabilized cholesteric texture light shutter,” SID Int. Symp. Dig. Tech. Pap. 43(1), 1466–1469 (2012).
[Crossref]

K. S. Bae, Y. J. Jang, C. J. Yu, J. E. Jang, J. E. Jung, J. S. Choi, S. J. Park, and J. H. Kim, “Multi-color cholesteric liquid crystal film by fixing helical pitch with reactive mesogen,” SID Int. Symp. Dig. Tech. Pap. 41(1), 1755–1757 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustrations of the driving mode and N*LC molecular orientation for an N*LC cell. (a) a fabricated N*LC cell at the zero electric field state and the helical axis perpendicular to the substrate surface. The helical configuration is standing-helix. (b) A small VIPS (VIPS < Vth) applied to the N*LC cell and the reorientation of the helical molecular director between the IPS electrodes. As the VIPS is more than Vth, this phenomenon is more remarkable, as shown in (c). (d) An N*LC cell addressed by a large electric field and the helical axis parallel to the substrate surface. The lying-helix configuration of the cell between the IPS electrodes is constructed. Using the three-terminal-electrode architecture, the induced non-uniform vertical electric field makes the driven helical configuration return to the original, as shown in (e). The N*LC configuration of (e) is the same as that of (a).
Fig. 2
Fig. 2 (a) A schematic illustration of the Bragg reflection of an N*LC cell. (b) Reflectance spectra of three kinds of N*LC cells with different chiral dopant concentrations. The center reflection wavelengths of these three cells are at 456 nm, 512 nm, and 659 nm, which are measured at room temperature.
Fig. 3
Fig. 3 (a) T-V curves for N*LC cells doped with different chiral concentrations. The represented value of the applied voltage labeled on the horizontal axis is the peak-to-peak value, and the inserted image shows the driving scheme of an N*LC cell. (b) Voltage-dependent POM images for these three N*LC cells. The helical molecular transition is labeled by the red arrows. The N*LC cell in blue shows a good dark state and good stability of the molecular structure at a high operating voltage. (c) Different driving modes used for the blue N*LC cell. From the T-V curves, the two bistable states without a holding voltage are obtained. (d) POM images, conoscopic images, and helical structure illustrations for the blue N*LC cell addressed at different IPS voltages and by different driving modes.
Fig. 4
Fig. 4 (a) Voltage-dependent Bragg reflection behavior of the blue N*LC cell. As the voltage is increased, the reflectance is reduced and the central reflected wavelength becomes shorter. (b) Temperature-dependent Bragg reflection behavior of the blue N*LC cell. As the temperature rises, blueshift of the central reflected wavelength is observed and the reflectance due to the thermodynamic effect is also decreased. Moreover, the full width at half maximum is gradually broadened. The inserted conoscopic images show that when the temperature is increased, the reticle and lobe edge will vanish.
Fig. 5
Fig. 5 (a) Time-dependent light transmittance of the blue N*LC cell at the zero applied voltage state. After the applied VIPS is released, the value of normalized light transmittance is kept above 0.95 for over 6 hr. The inserted pictures show the variation in light transmittance of the blue N*LC cell before and after the voltage drops. (b)-(d) Bistable-state responses of the blue N*LC cell through the three-terminal-electrode driving scheme. (b)-(c) Rise-time and fall-time responses of the blue N*LC cell addressed by the IPS electric field. The helical structure is changed from SH to LH and is sustained in the LH state when the IPS electric field is turned off. Through the fitting curves, the time for the helical configuration transition and the variation in light transmittance are demonstrated. (d) Fast bistable switching response (fall time) by using the non-uniform vertical electric field on the blue N*LC cell.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Risetime=A(1 e t/t 1 )+B(1 e t/t 2 )
Fall time=C( e t/t 3 )+D( e t/t 4 )+k

Metrics