Abstract

The Kumgang laser, a 4 kW (4 x 0.1 J @ 10 kHz / 8.5 ns) coherent beam combination laser using self-controlled stimulated Brillouin scattering phase conjugation mirrors (SBS-PCMs), is being developed. The front-end (FE) and the pre-amplifier (PA) are completed. The FE produces pulse energy of 0.51mJ and a pulse width of 8.5 ns with a 10 kHz repetition rate (0.51mJ @ 10 kHz / 8.5 ns) and a 95 MHz linewidth. The PA amplifies up to 200 W (20 mJ @ 10 kHz / 8.5 ns) with an input power 5.1 W.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror

Koji Tsubakimoto, Hidetsugu Yoshida, and Noriaki Miyanaga
Opt. Express 24(12) 12557-12564 (2016)

High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM

Zhijun Kang, Zhongwei Fan, Yutao Huang, Hongbo Zhang, Wenqi Ge, Mingshan Li, Xiaochao Yan, and Guoxin Zhang
Opt. Express 26(6) 6560-6571 (2018)

Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate

Zhigang Zhao, Yantao Dong, Sunqiang Pan, Chong Liu, Jun Chen, Lixin Tong, Qingsong Gao, and Chun Tang
Opt. Express 20(2) 1896-1902 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kong, J. S. Shin, D. H. Beak, and S. Park, “Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver,” JKPS 56(11), 177–183 (2010).
    [Crossref]
  2. V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2(1), 4–6 (1978).
    [Crossref] [PubMed]
  3. S. K. Lee, H. J. Kong, and M. Nakatsuka, “Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies,” Appl. Phys. Lett. 87(16), 161109 (2005).
    [Crossref]
  4. H. J. Kong, J. W. Yoon, J. S. Shin, and D. H. Beak, “Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors,” Appl. Phys. Lett. 92(2), 021120 (2008).
    [Crossref]
  5. H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors,” Nucl. Fusion 49(12), 125002 (2009).
    [Crossref]
  6. H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part Beams 27(01), 179–184 (2009).
    [Crossref]
  7. J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
    [Crossref]
  8. H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6c), 962–966 (2013).
    [Crossref]
  9. T. Y. Fan, “Laser beam combining for high-power and high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  10. Robert Tyson, Principal of Adaptive Optics (CRC Press, 2010)
  11. A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1(1), 16–18 (1977).
    [Crossref] [PubMed]
  12. V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2(1), 4–6 (1978).
    [Crossref] [PubMed]
  13. H. J. Kong, S. Park, S. Cha, and M. Kalal, “Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers,” Opt. Mater. 35(4), 807–811 (2013).
    [Crossref]
  14. M. J. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin Scattering: Fundamentals and Applications (CRC press, 2003)
  15. J. S. Shin and H. J. Kong, “Phase fluctuation of self-phase-controlled stimulated Brillouin scattering waves via K8 glass,” Opt. Commun. 285(13–14), 2977–2979 (2012).
    [Crossref]
  16. H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36(16), 3739–3744 (1997).
    [Crossref] [PubMed]
  17. H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Japanese Journal of Applied Optics 45(6A), 5073–5075 (2006).
    [Crossref]
  18. H. Yoshida, A. Ohkubo, H. Fujitah, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Review of Laser Engineering 29(2), 109–114 (2001).
    [Crossref]

2013 (2)

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6c), 962–966 (2013).
[Crossref]

H. J. Kong, S. Park, S. Cha, and M. Kalal, “Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers,” Opt. Mater. 35(4), 807–811 (2013).
[Crossref]

2012 (1)

J. S. Shin and H. J. Kong, “Phase fluctuation of self-phase-controlled stimulated Brillouin scattering waves via K8 glass,” Opt. Commun. 285(13–14), 2977–2979 (2012).
[Crossref]

2010 (2)

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

H. J. Kong, J. S. Shin, D. H. Beak, and S. Park, “Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver,” JKPS 56(11), 177–183 (2010).
[Crossref]

2009 (2)

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors,” Nucl. Fusion 49(12), 125002 (2009).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part Beams 27(01), 179–184 (2009).
[Crossref]

2008 (1)

H. J. Kong, J. W. Yoon, J. S. Shin, and D. H. Beak, “Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors,” Appl. Phys. Lett. 92(2), 021120 (2008).
[Crossref]

2006 (1)

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Japanese Journal of Applied Optics 45(6A), 5073–5075 (2006).
[Crossref]

2005 (2)

S. K. Lee, H. J. Kong, and M. Nakatsuka, “Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies,” Appl. Phys. Lett. 87(16), 161109 (2005).
[Crossref]

T. Y. Fan, “Laser beam combining for high-power and high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

2001 (1)

H. Yoshida, A. Ohkubo, H. Fujitah, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Review of Laser Engineering 29(2), 109–114 (2001).
[Crossref]

1997 (1)

1978 (2)

1977 (1)

Beak, D. H.

H. J. Kong, J. S. Shin, D. H. Beak, and S. Park, “Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver,” JKPS 56(11), 177–183 (2010).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors,” Nucl. Fusion 49(12), 125002 (2009).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part Beams 27(01), 179–184 (2009).
[Crossref]

H. J. Kong, J. W. Yoon, J. S. Shin, and D. H. Beak, “Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors,” Appl. Phys. Lett. 92(2), 021120 (2008).
[Crossref]

Cha, S.

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6c), 962–966 (2013).
[Crossref]

H. J. Kong, S. Park, S. Cha, and M. Kalal, “Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers,” Opt. Mater. 35(4), 807–811 (2013).
[Crossref]

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power and high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Fujita, H.

Fujitah, H.

H. Yoshida, A. Ohkubo, H. Fujitah, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Review of Laser Engineering 29(2), 109–114 (2001).
[Crossref]

Giuliano, C. R.

Kalal, M.

H. J. Kong, S. Park, S. Cha, and M. Kalal, “Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers,” Opt. Mater. 35(4), 807–811 (2013).
[Crossref]

Kim, J. S.

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6c), 962–966 (2013).
[Crossref]

Kmetik, V.

Kong, H. J.

H. J. Kong, S. Park, S. Cha, and M. Kalal, “Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers,” Opt. Mater. 35(4), 807–811 (2013).
[Crossref]

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6c), 962–966 (2013).
[Crossref]

J. S. Shin and H. J. Kong, “Phase fluctuation of self-phase-controlled stimulated Brillouin scattering waves via K8 glass,” Opt. Commun. 285(13–14), 2977–2979 (2012).
[Crossref]

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

H. J. Kong, J. S. Shin, D. H. Beak, and S. Park, “Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver,” JKPS 56(11), 177–183 (2010).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors,” Nucl. Fusion 49(12), 125002 (2009).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part Beams 27(01), 179–184 (2009).
[Crossref]

H. J. Kong, J. W. Yoon, J. S. Shin, and D. H. Beak, “Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors,” Appl. Phys. Lett. 92(2), 021120 (2008).
[Crossref]

S. K. Lee, H. J. Kong, and M. Nakatsuka, “Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies,” Appl. Phys. Lett. 87(16), 161109 (2005).
[Crossref]

Lee, S. K.

S. K. Lee, H. J. Kong, and M. Nakatsuka, “Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies,” Appl. Phys. Lett. 87(16), 161109 (2005).
[Crossref]

Lim, C.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Japanese Journal of Applied Optics 45(6A), 5073–5075 (2006).
[Crossref]

Nakatsuka, M.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Japanese Journal of Applied Optics 45(6A), 5073–5075 (2006).
[Crossref]

S. K. Lee, H. J. Kong, and M. Nakatsuka, “Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies,” Appl. Phys. Lett. 87(16), 161109 (2005).
[Crossref]

H. Yoshida, A. Ohkubo, H. Fujitah, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Review of Laser Engineering 29(2), 109–114 (2001).
[Crossref]

H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36(16), 3739–3744 (1997).
[Crossref] [PubMed]

Ohkubo, A.

H. Yoshida, A. Ohkubo, H. Fujitah, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Review of Laser Engineering 29(2), 109–114 (2001).
[Crossref]

Park, H.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Japanese Journal of Applied Optics 45(6A), 5073–5075 (2006).
[Crossref]

Park, S.

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6c), 962–966 (2013).
[Crossref]

H. J. Kong, S. Park, S. Cha, and M. Kalal, “Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers,” Opt. Mater. 35(4), 807–811 (2013).
[Crossref]

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

H. J. Kong, J. S. Shin, D. H. Beak, and S. Park, “Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver,” JKPS 56(11), 177–183 (2010).
[Crossref]

Pepper, D. M.

Shin, J. S.

J. S. Shin and H. J. Kong, “Phase fluctuation of self-phase-controlled stimulated Brillouin scattering waves via K8 glass,” Opt. Commun. 285(13–14), 2977–2979 (2012).
[Crossref]

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

H. J. Kong, J. S. Shin, D. H. Beak, and S. Park, “Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver,” JKPS 56(11), 177–183 (2010).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part Beams 27(01), 179–184 (2009).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors,” Nucl. Fusion 49(12), 125002 (2009).
[Crossref]

H. J. Kong, J. W. Yoon, J. S. Shin, and D. H. Beak, “Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors,” Appl. Phys. Lett. 92(2), 021120 (2008).
[Crossref]

Wang, V.

Yamanaka, T.

Yariv, A.

Yoon, J. W.

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part Beams 27(01), 179–184 (2009).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors,” Nucl. Fusion 49(12), 125002 (2009).
[Crossref]

H. J. Kong, J. W. Yoon, J. S. Shin, and D. H. Beak, “Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors,” Appl. Phys. Lett. 92(2), 021120 (2008).
[Crossref]

Yoshida, H.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Japanese Journal of Applied Optics 45(6A), 5073–5075 (2006).
[Crossref]

H. Yoshida, A. Ohkubo, H. Fujitah, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Review of Laser Engineering 29(2), 109–114 (2001).
[Crossref]

H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36(16), 3739–3744 (1997).
[Crossref] [PubMed]

Yoshida, K.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. K. Lee, H. J. Kong, and M. Nakatsuka, “Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies,” Appl. Phys. Lett. 87(16), 161109 (2005).
[Crossref]

H. J. Kong, J. W. Yoon, J. S. Shin, and D. H. Beak, “Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors,” Appl. Phys. Lett. 92(2), 021120 (2008).
[Crossref]

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, “Laser beam combining for high-power and high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Japanese Journal of Applied Optics (1)

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Japanese Journal of Applied Optics 45(6A), 5073–5075 (2006).
[Crossref]

JKPS (1)

H. J. Kong, J. S. Shin, D. H. Beak, and S. Park, “Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver,” JKPS 56(11), 177–183 (2010).
[Crossref]

Laser Part Beams (1)

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part Beams 27(01), 179–184 (2009).
[Crossref]

Nucl. Fusion (1)

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors,” Nucl. Fusion 49(12), 125002 (2009).
[Crossref]

Opt. Commun. (1)

J. S. Shin and H. J. Kong, “Phase fluctuation of self-phase-controlled stimulated Brillouin scattering waves via K8 glass,” Opt. Commun. 285(13–14), 2977–2979 (2012).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

H. J. Kong, S. Park, S. Cha, and M. Kalal, “Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers,” Opt. Mater. 35(4), 807–811 (2013).
[Crossref]

Phys. Status Solidi (1)

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6c), 962–966 (2013).
[Crossref]

Review of Laser Engineering (1)

H. Yoshida, A. Ohkubo, H. Fujitah, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Review of Laser Engineering 29(2), 109–114 (2001).
[Crossref]

Other (2)

M. J. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin Scattering: Fundamentals and Applications (CRC press, 2003)

Robert Tyson, Principal of Adaptive Optics (CRC Press, 2010)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The experimental setup of the reflectivity measurements of the SBS-PCM using the Galden HT-70 fluid.
Fig. 2
Fig. 2 The reflectivity of the Galden HT-70 fluid given the input energy.
Fig. 3
Fig. 3 A schematic diagram of the Kumgang laser system.
Fig. 4
Fig. 4 A schematic diagram of the FE: LD, the single-frequency diode laser oscillator; FC/APC, the fiber connector/angled physical contact; AOM, the acousto-optic modulator; WDM, the wavelength-division multiplexor; Yb-fiber, the Yb-doped fiber amplifier; BPF, the band-pass filter; FC, the fiber collimator; HWP1 and HWP2, half-wave plates; PBS, the polarizing beam splitter; FR1 and FR2, Faraday rotators; TFP1 and TFP2, thin-film polarizers; PC, the Pockels cell; QWP, the quarter-wave plate; HR1 and HR2; high reflectors; A1 and A2, apertures; and GM, the Nd:YAG rod gain module.
Fig. 5
Fig. 5 (a) A Fabry-Perot interferogram of the output beam of the RA, and (b) the interference spectrum of the output beam of the RA measured by the scanning Fabry-Perot interferometer.
Fig. 6
Fig. 6 (a) The pulse shape of the RA cavity leak pulse, (b) the output pulse shape of the RA, and (c) the output beam profile of the RA.
Fig. 7
Fig. 7 The center wavelength of the output beam of LD as a function of the LD temperature.
Fig. 8
Fig. 8 The output power of the RA during a time of one hour.
Fig. 9
Fig. 9 A schematic diagram of the PA: FE, the front-end; FI, the Faraday isolator; PBS, the polarizing beam splitter; RL1~4, image relaying lenses; GM1~3, Nd:YAG gain modules; PR, the polarization rotator; FR, the Faraday rotator; HR, the high reflector; and A and B, measurement points.
Fig. 10
Fig. 10 (a) The output power of the PA at point B as a function of the input power measured at point A, and (b) the output beam profile of the PA.

Tables (2)

Tables Icon

Table 1 Physical and Optical Properties of the HT-70 Fluid

Tables Icon

Table 2 A Summary of the Design Parameters, Criteria, and Current Status of the Kumgang Laser System

Metrics