Abstract

The InN dot-like layer was applied in the gallium nitride based material for the purpose of infrared photodetectors (PDs). This InN layer was grown by a low-pressure metal organic chemical vapor deposition technology under different growth temperatures. The X-ray diffraction patterns provide the information of crystal structure and the hexagonal orientation was detected. The Raman shifts and photoluminescence were also used to characterize the quality of InN film. Finally, the fabricated Schottky-type photodetector was tested under a solar simulator and a long-wavelength laser (λ = 1550nm). The measurements show a highly linear relation between photo-generated currents and laser powers for the wavelength of 1550 nm. In the photonic detection range suitable for optical fiber communiation, a quantum efficiency of 9.2% can be observed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
InN-based heterojunction photodetector with extended infrared response

Lung-Hsing Hsu, Chien-Ting Kuo, Jhih-Kai Huang, Shun-Chieh Hsu, Hsin-Ying Lee, Hao-Chung Kuo, Po-Tsung Lee, Yu-Lin Tsai, Yi-Chia Hwang, Chen-Feng Su, Jr-Hau He, Shih-Yen Lin, Yuh-Jen Cheng, and Chien-Chung Lin
Opt. Express 23(24) 31150-31162 (2015)

InN/GaN alternative growth of thick InGaN wells on GaN-based light emitting diodes

Chun-Ta Yu, Wei-Chih Lai, Cheng-Hsiung Yen, and Shoou-Jinn Chang
Opt. Mater. Express 3(11) 1952-1959 (2013)

Investigation of high indium-composition InGaN/GaN heterostructures on ZnO grown by metallic organic chemical vapor deposition

M. Tian, Y. D. Qian, C. Zhang, L. Li, S. D. Yao, I. T. Ferguson, D. N. Talwar, J. Y. Zhai, D. H. Meng, K. Y. He, L. Y. Wan, and Z. C. Feng
Opt. Mater. Express 8(10) 3184-3196 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge Univ. Press, 2003).
  2. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, 2nd ed. (Springer-Verlag, 2000).
  3. C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
    [Crossref]
  4. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
    [Crossref]
  5. H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
    [Crossref]
  6. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
    [Crossref]
  7. Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
    [Crossref]
  8. H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
    [Crossref]
  9. A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
    [Crossref]
  10. K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
    [Crossref]
  11. C. H. Chen, K. R. Wang, S. Y. Tsai, H. J. Chien, and S. L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49, 04DG06 (2010).
  12. J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
    [Crossref]
  13. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
  14. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
    [Crossref]
  15. L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
    [Crossref]
  16. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
    [Crossref]
  17. H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
    [Crossref] [PubMed]
  18. J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
    [Crossref]
  19. K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
    [Crossref]
  20. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
    [Crossref]
  21. S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi 2(2), 826–832 (2005).
    [Crossref]
  22. W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
    [Crossref]
  23. O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
    [Crossref]
  24. B. Maleyre, O. Briot, and S. Ruffenach, “MOVPE growth of InN films and quantum dots,” J. Cryst. Growth 269(1), 15–21 (2004).
    [Crossref]
  25. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [Crossref]
  26. C. C. Lin, M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, “Numerical study of quantum-dot-embedded solar cells,” IEEE J. Sel. Top. Quantum Electron. 19, 4000110 (2013).
  27. V. J. Gómez, P. E. D. Soto Rodriguez, P. Kumar, E. Calleja, and R. Nötzel, “High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells,” Jpn. J. Appl. Phys. 52(8S), 08JH09 (2013).
    [Crossref]
  28. P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum Dot Opto-Electronic Devices,” Annu. Rev. Mater. Res. 34(1), 1–40 (2004).
    [Crossref]
  29. J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared photodetectors,” Appl. Phys. Lett. 101(24), 241114 (2012).
    [Crossref]
  30. D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
    [Crossref]
  31. E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84(4), 535–537 (2004).
    [Crossref]
  32. W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
    [Crossref]
  33. J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
    [Crossref]
  34. T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
    [Crossref]
  35. C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
    [Crossref]
  36. F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
    [Crossref]
  37. I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
    [Crossref] [PubMed]
  38. M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
    [Crossref]
  39. Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
    [Crossref]
  40. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
    [Crossref]
  41. C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
    [Crossref]
  42. O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
    [Crossref]
  43. S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
    [Crossref]
  44. V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
    [Crossref]
  45. J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, “Cross-sectional Raman spectra of InN epifilms,” Appl. Phys. Lett. 87(4), 041907 (2005).
    [Crossref]
  46. E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
    [Crossref]
  47. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010).
    [Crossref] [PubMed]
  48. M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
    [Crossref]

2013 (6)

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

C. C. Lin, M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, “Numerical study of quantum-dot-embedded solar cells,” IEEE J. Sel. Top. Quantum Electron. 19, 4000110 (2013).

V. J. Gómez, P. E. D. Soto Rodriguez, P. Kumar, E. Calleja, and R. Nötzel, “High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells,” Jpn. J. Appl. Phys. 52(8S), 08JH09 (2013).
[Crossref]

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

2012 (4)

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared photodetectors,” Appl. Phys. Lett. 101(24), 241114 (2012).
[Crossref]

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

2011 (4)

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

2010 (5)

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[Crossref]

C. H. Chen, K. R. Wang, S. Y. Tsai, H. J. Chien, and S. L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49, 04DG06 (2010).

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010).
[Crossref] [PubMed]

2009 (4)

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

2008 (5)

M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
[Crossref]

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

2006 (1)

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

2005 (4)

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi 2(2), 826–832 (2005).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, “Cross-sectional Raman spectra of InN epifilms,” Appl. Phys. Lett. 87(4), 041907 (2005).
[Crossref]

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

2004 (5)

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

B. Maleyre, O. Briot, and S. Ruffenach, “MOVPE growth of InN films and quantum dots,” J. Cryst. Growth 269(1), 15–21 (2004).
[Crossref]

E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84(4), 535–537 (2004).
[Crossref]

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum Dot Opto-Electronic Devices,” Annu. Rev. Mater. Res. 34(1), 1–40 (2004).
[Crossref]

2003 (3)

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

2002 (1)

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

1999 (1)

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

1998 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

1997 (2)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[Crossref]

Aderhold, J.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Ager, J. W.

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Aguirre de Carcer, I.

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Akasaka, S.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Arif, R. A.

M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
[Crossref]

Artús, L.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Assefa, S.

Baidakova, M. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Bao, J. M.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Barve, A.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared photodetectors,” Appl. Phys. Lett. 101(24), 241114 (2012).
[Crossref]

Bedell, S. W.

Bell, D. C.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Bhattacharya, P.

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum Dot Opto-Electronic Devices,” Annu. Rev. Mater. Res. 34(1), 1–40 (2004).
[Crossref]

Bhuiyan, A. G.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[Crossref]

Botton, G. A.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Briot, O.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi 2(2), 826–832 (2005).
[Crossref]

B. Maleyre, O. Briot, and S. Ruffenach, “MOVPE growth of InN films and quantum dots,” J. Cryst. Growth 269(1), 15–21 (2004).
[Crossref]

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

Calle, F.

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Calleja, E.

V. J. Gómez, P. E. D. Soto Rodriguez, P. Kumar, E. Calleja, and R. Nötzel, “High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells,” Jpn. J. Appl. Phys. 52(8S), 08JH09 (2013).
[Crossref]

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Capasso, F.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Chang, C. K.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Chang, C. Y.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Chang, J. R.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Chang, W. H.

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

Chang, W.-H.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chang, Y. A.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Chang, Y. L.

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

Chen, C. H.

C. H. Chen, K. R. Wang, S. Y. Tsai, H. J. Chien, and S. L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49, 04DG06 (2010).

Chen, C. Y.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chen, G.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Chen, H. C.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Chen, J. W.

J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, “Cross-sectional Raman spectra of InN epifilms,” Appl. Phys. Lett. 87(4), 041907 (2005).
[Crossref]

Chen, K. J.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Chen, M. C.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Chen, W. K.

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chen, Y.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Chen, Y. F.

J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, “Cross-sectional Raman spectra of InN epifilms,” Appl. Phys. Lett. 87(4), 041907 (2005).
[Crossref]

Chen, Y. H.

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

Cheng, Y. C.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chi, G. C.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Chien, H. J.

C. H. Chen, K. R. Wang, S. Y. Tsai, H. J. Chien, and S. L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49, 04DG06 (2010).

Chiu, C. H.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Chocho, K.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Chou, W. C.

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chuang, K. L.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Chuang, K. Y.

C. C. Lin, M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, “Numerical study of quantum-dot-embedded solar cells,” IEEE J. Sel. Top. Quantum Electron. 19, 4000110 (2013).

Cruz, S. C.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Cui, K.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Cuscó, R.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Davydov, V. Y.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Demangeot, F.

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

DenBaars, S. P.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Djavid, M.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Domagala, J.

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

Doppalapudi, D.

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[Crossref]

Ee, Y.-K.

M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
[Crossref]

Emtsev, V. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Feng, L.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Frandon, J.

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

Fu, C. P.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Fu, S. F.

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

Fu, Y. K.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Fujii, T.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Fujioka, H.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Fukumura, T.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Ge, W.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Ghosh, S.

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum Dot Opto-Electronic Devices,” Annu. Rev. Mater. Res. 34(1), 1–40 (2004).
[Crossref]

Gibart, P. J. L.

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Giesen, C.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

Gil, B.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi 2(2), 826–832 (2005).
[Crossref]

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

Gómez, V. J.

V. J. Gómez, P. E. D. Soto Rodriguez, P. Kumar, E. Calleja, and R. Nötzel, “High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells,” Jpn. J. Appl. Phys. 52(8S), 08JH09 (2013).
[Crossref]

Goncharuk, I. N.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Graul, J.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Grützmacher, D.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Guo, L.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Guo, Y.

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

Haab, A.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Haller, E. E.

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Han, H. V.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Han, H. W.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Hardtdegen, H.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Harima, H.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Hashimoto, A.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[Crossref]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Hernández, S.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Heuken, M.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

Higgins, J. B.

M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
[Crossref]

Högele, M.

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

Hong, H. F.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Huang, W.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

Ivaldi, F.

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

Ivanov, S. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Iza, M.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Jamil, M.

M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
[Crossref]

Jaque, F.

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Jia, C. H.

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

Jiang, H.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Jones, R. E.

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

Kamisawa, A.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Kawasaki, M.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Ke, W. C.

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Kikuchi, A.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[Crossref]

Kim, T. W.

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Kishino, K.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Klochikhin, A. A.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Kneissl, M.

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

Kobayashi, A.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Korinek, A.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Kozaki, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Kret, S.

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

Krishna, S.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared photodetectors,” Appl. Phys. Lett. 101(24), 241114 (2012).
[Crossref]

Ku, C. S.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Kumar, P.

V. J. Gómez, P. E. D. Soto Rodriguez, P. Kumar, E. Calleja, and R. Nötzel, “High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells,” Jpn. J. Appl. Phys. 52(8S), 08JH09 (2013).
[Crossref]

Kuo, C. H.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Kuo, C. W.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Kuo, H. C.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Kurdyukov, D. A.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Kurimoto, E.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Lai, F. I.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Lai, W. C.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Lan, S. M.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Lay, T. S.

C. C. Lin, M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, “Numerical study of quantum-dot-embedded solar cells,” IEEE J. Sel. Top. Quantum Electron. 19, 4000110 (2013).

Lee, L.

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Lee, M. C.

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Leese, T.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

Li, D.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Li, S. X.

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Li, Z.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Li, Z. Y.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Likovich, E.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Liliental-Weber, Z.

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

Lin, C. C.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

C. C. Lin, M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, “Numerical study of quantum-dot-embedded solar cells,” IEEE J. Sel. Top. Quantum Electron. 19, 4000110 (2013).

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Lin, D. W.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Lin, S. H.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Lin, W. J.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Liu, G. H.

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

Liu, H.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Liu, X. L.

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

Lu, H.

J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, “Cross-sectional Raman spectra of InN epifilms,” Appl. Phys. Lett. 87(4), 041907 (2005).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Lu, L.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Lu, T. C.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Luque, A.

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Makino, T.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Maleyre, B.

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi 2(2), 826–832 (2005).
[Crossref]

B. Maleyre, O. Briot, and S. Ruffenach, “MOVPE growth of InN films and quantum dots,” J. Cryst. Growth 269(1), 15–21 (2004).
[Crossref]

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

Marti, A.

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Martin, R. W.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Matsuoka, T.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Meissner, C.

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

Mi, Z.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

Miao, G.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Mikulics, M.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Miller, E. J.

E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84(4), 535–537 (2004).
[Crossref]

Miller, N.

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

Mishra, U. K.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Monroy, E.

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Moret, M.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

Moustakas, T. D.

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[Crossref]

Munoz Merino, E.

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Nakahara, K.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Nakano, M.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Nakao, M.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Nanishi, Y.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Narayanamurti, V.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Neufeld, C. J.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Nguyen, H. P. T.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

Nötzel, R.

V. J. Gómez, P. E. D. Soto Rodriguez, P. Kumar, E. Calleja, and R. Nötzel, “High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells,” Jpn. J. Appl. Phys. 52(8S), 08JH09 (2013).
[Crossref]

O’Donnell, K. P.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Ohta, J.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Ohtomo, A.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Okamoto, H.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Omnes, F.

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Oshima, M.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Pan, C. J.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Park, J.

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Park, W. I.

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Pastor, D.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Pinquier, C.

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

Pristovsek, M.

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

Rice, P. M.

Romano, L. T.

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[Crossref]

Ruffenach, S.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi 2(2), 826–832 (2005).
[Crossref]

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

B. Maleyre, O. Briot, and S. Ruffenach, “MOVPE growth of InN films and quantum dots,” J. Cryst. Growth 269(1), 15–21 (2004).
[Crossref]

Rushworth, S.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

Ryu, H.

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Sakharov, A. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Sanchez, M. A.

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Sano, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Saraie, J.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

Schaff, W. J.

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, “Cross-sectional Raman spectra of InN epifilms,” Appl. Phys. Lett. 87(4), 041907 (2005).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Sekiguchi, H.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Seryogin, G.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Shalish, I.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Shan, W.

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Shao, J.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared photodetectors,” Appl. Phys. Lett. 101(24), 241114 (2012).
[Crossref]

Shen, B.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Sheu, J. K.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Shih, I.

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

Shimomoto, K.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Singh, R.

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[Crossref]

Smirnov, A. N.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Son, D. I.

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Son, T.

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Song, H.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Soto Rodriguez, P. E. D.

V. J. Gómez, P. E. D. Soto Rodriguez, P. Kumar, E. Calleja, and R. Nötzel, “High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells,” Jpn. J. Appl. Phys. 52(8S), 08JH09 (2013).
[Crossref]

Speck, J. S.

E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84(4), 535–537 (2004).
[Crossref]

Stiff-Roberts, A. D.

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum Dot Opto-Electronic Devices,” Annu. Rev. Mater. Res. 34(1), 1–40 (2004).
[Crossref]

Stintz, A.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared photodetectors,” Appl. Phys. Lett. 101(24), 241114 (2012).
[Crossref]

Succi, M.

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Sun, X.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Taguchi, K.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

Tai, S. K.

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

Tamura, K.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Tan, M. H.

C. C. Lin, M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, “Numerical study of quantum-dot-embedded solar cells,” IEEE J. Sel. Top. Quantum Electron. 19, 4000110 (2013).

Tanabe, T.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Tang, N.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Tansu, N.

M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
[Crossref]

Tasi, M. A.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Toledo, N. G.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Tong, H.

M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
[Crossref]

Topuria, T.

Tsai, C. P.

C. C. Lin, M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, “Numerical study of quantum-dot-embedded solar cells,” IEEE J. Sel. Top. Quantum Electron. 19, 4000110 (2013).

Tsai, S. Y.

C. H. Chen, K. R. Wang, S. Y. Tsai, H. J. Chien, and S. L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49, 04DG06 (2010).

Tsai, Y. L.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Tsukazaki, A.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Tu, P. M.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Tun, C. J.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Ueno, K.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Umemoto, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Vandervelde, T. E.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared photodetectors,” Appl. Phys. Lett. 101(24), 241114 (2012).
[Crossref]

Vekshin, V. A.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Vlasov, Y. A.

Waltereit, P.

E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84(4), 535–537 (2004).
[Crossref]

Walukiewicz, W.

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Wang, H. W.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Wang, K. R.

C. H. Chen, K. R. Wang, S. Y. Tsai, H. J. Chien, and S. L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49, 04DG06 (2010).

Wang, S. C.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Wang, X.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Wang, Z. G.

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

Watson, I. M.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Winden, A.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Wu, J.

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Wu, S. L.

C. H. Chen, K. R. Wang, S. Y. Tsai, H. J. Chien, and S. L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49, 04DG06 (2010).

Xia, F.

Xu, F.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Yamamoto, A.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[Crossref]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Yang, H. Y.

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Yang, X.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Yang, Y. S.

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

Yeon, S.

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Yi, W.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Yoshimoto, M.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

You, K.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Yu, E. T.

E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84(4), 535–537 (2004).
[Crossref]

Yu, K. M.

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

Yu, P.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Yuji, H.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Zan, H. W.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Zhang, S.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Zhang, Y.

Zheng, X.

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Zhou, X. L.

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

Zimmler, M. A.

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum Dot Opto-Electronic Devices,” Annu. Rev. Mater. Res. 34(1), 1–40 (2004).
[Crossref]

Appl. Phys. Express (2)

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Appl. Phys. Lett. (14)

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 0719110 (2005).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared photodetectors,” Appl. Phys. Lett. 101(24), 241114 (2012).
[Crossref]

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84(4), 535–537 (2004).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[Crossref]

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[Crossref]

J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, “Cross-sectional Raman spectra of InN epifilms,” Appl. Phys. Lett. 87(4), 041907 (2005).
[Crossref]

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. C. Lin, M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, “Numerical study of quantum-dot-embedded solar cells,” IEEE J. Sel. Top. Quantum Electron. 19, 4000110 (2013).

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tasi, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photon. Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

J. Appl. Phys. (4)

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[Crossref]

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

J. Cryst. Growth (5)

C. H. Jia, Y. H. Chen, X. L. Zhou, G. H. Liu, Y. Guo, X. L. Liu, Y. S. Yang, and Z. G. Wang, “InN layers grown by MOCVD on SrTiO3 substrates,” J. Cryst. Growth 312(3), 373–377 (2010).
[Crossref]

O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “Absorption and Raman scattering processes in InN films and dots,” J. Cryst. Growth 269(1), 22–28 (2004).
[Crossref]

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Growth of InN films and nanostructures by MOVPE,” J. Cryst. Growth 311(10), 2761–2766 (2009).
[Crossref]

B. Maleyre, O. Briot, and S. Ruffenach, “MOVPE growth of InN films and quantum dots,” J. Cryst. Growth 269(1), 15–21 (2004).
[Crossref]

Jpn. J. Appl. Phys. (6)

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

C. Y. Chen, L. Lee, S. K. Tai, S. F. Fu, W. C. Ke, W. C. Chou, W. H. Chang, M. C. Lee, and W. K. Chen, “Optical Properties of Uncapped InN Nanodots Grown at Various Temperatures,” Jpn. J. Appl. Phys. 48(3), 031001 (2009).
[Crossref]

F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, and M. Kneissl, “Influence of a GaN Cap Layer on the Morphology and the Physical Properties of Embedded Self-Organized InN Quantum Dots on GaN(0001) Grown by Metal–Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 50(3R), 031004 (2011).
[Crossref]

C. H. Chen, K. R. Wang, S. Y. Tsai, H. J. Chien, and S. L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49, 04DG06 (2010).

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

V. J. Gómez, P. E. D. Soto Rodriguez, P. Kumar, E. Calleja, and R. Nötzel, “High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells,” Jpn. J. Appl. Phys. 52(8S), 08JH09 (2013).
[Crossref]

Nano Lett. (1)

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling Electron Overflow in Phosphor-Free Ingan/Gan Nanowire White Light-Emitting Diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

I. Shalish, G. Seryogin, W. Yi, J. M. Bao, M. A. Zimmler, E. Likovich, D. C. Bell, F. Capasso, and V. Narayanamurti, “Epitaxial catalyst-free growth of InN nanorods on c-plane sapphire,” Nanoscale Res. Lett. 4(6), 532–537 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Phys. Status Solidi (3)

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi 2(2), 826–832 (2005).
[Crossref]

J. W. Ager, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, and W. Walukiewicz, “Mg-doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements,” Phys. Status Solidi 245(5), 873–877 (2008).
[Crossref]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, “Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys,” Phys. Status Solidi 240(2), 425–428 (2003).
[Crossref]

Phys. Status Solidi A (1)

M. Jamil, R. A. Arif, Y.-K. Ee, H. Tong, J. B. Higgins, and N. Tansu, “MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates,” Phys. Status Solidi A 205(7), 1619–1624 (2008).
[Crossref]

Proc. SPIE (1)

E. Munoz Merino, E. Monroy, F. Calle, M. A. Sanchez, E. Calleja, F. Omnes, P. J. L. Gibart, F. Jaque, and I. Aguirre de Carcer, “AlGaN-based photodetectors for solar UV applications,” Proc. SPIE 3629, 200–210 (1999).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Other (2)

E. F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge Univ. Press, 2003).

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, 2nd ed. (Springer-Verlag, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the nitride-based photodetector with InN dot-like structures. (b) The microscopic image of a finished device under test.
Fig. 2
Fig. 2 (a) Top-view SEM image of InN dot-like on the n-GaN:Si substrate. The (b) and (c) symbols indicate the different measured area on the sample. The inset SEM image is the cross-sectional view of the InN dot-like structure with the marked height of 162.5nm. (b) and (c) are the energy dispersive spectrometer (EDS) data from marked area of Fig. 2(a).
Fig. 3
Fig. 3 The HRXRD patterns: (a) 2θ scan of samples with various growth temperatures and (b) φ scan of 525°C uncapped wafer.
Fig. 4
Fig. 4 Raman spectrum for InN dots grown with different growth temperature on the n-GaN:Si substrate.
Fig. 5
Fig. 5 (a) The photoluminescence spectra at 10 K for InN-525-uc structures without LT-GaN and (b) with a capping LT-GaN layer.
Fig. 6
Fig. 6 (a) The TEM of the GaN cap/InN/GaN substrate. The dash line is the rough boundary between these layers and for eye-guiding only. (b) The EDS plots are shown for different regions of the structure. (c) The EDS line-scan results vs. location for indium and gallium concentration. The blue and red stripes at the bottom of the plot indicate the approximate range of InN and LT GaN layers. The highly overlapped section should result from the Ga diffusion.
Fig. 7
Fig. 7 (a) The ratio of photocurrent to dark current at reverse-bias corresponding to InN growth temperature of 525, 550, and 580 °C, and the comparison with InN-525-uc. (b) The reverse-bias I-V characteristics of the InN-525 measured in dark and under illumination of 1550 nm DFB laser light. (c) The reverse biased current (substracted by dark current) under various pump laser power. The reverse bias is −0.2V in the plot, and the linear slope of 0.443 (A/W) can be fitted from the measured data. (d) The external quantum efficiency of the InN photodetector between 0.79eV and 0.815eV.

Metrics