Abstract

We observed enhanced energy transfer between quantum dots which were spin coated on the surface of Ag island film. By adjusting the thickness of Al2O3 spacer layer (4-16 nm) between quantum dots and Ag island film, we studied the distance dependence of the plasmon enhanced energy transfer. Experimental results showed the energy transfer efficiency increased as the quantum dots approached closer to the Ag film. A time-correlated single-photon counting system was also applied to study the dynamics of the plasmon enhanced energy transfer between quantum dots. Obvious decay rate increasing was discovered from time-resolve photoluminescence spectra of both the donor and accepter quantum dots, which clearly confirmed the existence of strong photon-exciton interaction. The theoretical analysis performed by the finite difference time domain method and COMSOL program, further revealed large electronic field and energy transfer rate enchantments on the surface of Ag island film, which uncovered the dominant reasons for the quantum dots’ enhanced energy transfer.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects

Xiong-Rui Su, Wei Zhang, Li Zhou, Xiao-Niu Peng, and Qu-Quan Wang
Opt. Express 18(7) 6516-6521 (2010)

Surface plasmon-enhanced energy transfer in an organic light-emitting device structure

Ki Youl Yang, Kyung Cheol Choi, and Chi Won Ahn
Opt. Express 17(14) 11495-11504 (2009)

Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure

L.J. Higgins, V.D. Karanikolas, C.A. Marocico, A.P. Bell, T. C. Sadler, P.J. Parbrook, and A.L. Bradley
Opt. Express 23(2) 1377-1387 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
    [Crossref]
  2. B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, “Optical schemes for quantum computation in quantum dot molecules,” Phys. Rev. B 68(20), 205319 (2003).
    [Crossref]
  3. J. Zhu, J. J. Li, and J. W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics 7(2), 201–207 (2012).
    [Crossref]
  4. W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
    [Crossref] [PubMed]
  5. C. G. L. Ferri, R. H. Inman, B. Rich, A. Gopinathan, M. Khine, and S. Ghosh, “Plasmon-induced enhancement of intra-ensemble FRET in quantum dots on wrinkled thin films,” Opt. Mater. Express 3(3), 383–389 (2013).
    [Crossref]
  6. H. Sharma, M. A. Digman, N. Felsinger, E. Gratton, and M. Khine, “Enhanced emission of fluorophores on shrink-induced wrinkled composite structures,” Opt. Mater. Express 4(4), 753–763 (2014).
    [Crossref] [PubMed]
  7. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
    [Crossref]
  8. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
    [Crossref]
  9. R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
    [Crossref] [PubMed]
  10. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
    [Crossref] [PubMed]
  11. J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
    [Crossref]
  12. T. Shimada, S. Tomita, S. Hotta, S. Hayashi, and H. Yanagi, “Photoluminescence from donor-acceptor molecular systems via long distance energy transfer mediated by surface plasmons,” Jpn. J. Appl. Phys. 48(4), 042001 (2009).
    [Crossref]
  13. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
    [Crossref] [PubMed]
  14. Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
    [Crossref] [PubMed]
  15. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  16. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
    [Crossref] [PubMed]
  17. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  18. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  19. F. Rüting, J. Cuerda, J. Bravo-Abad, and F. J. Garcia-Vidal, “Lasing action assisted by long-range surface plasmons,” Laser and Photon. Rev. 8(5), L65–L70 (2014).
    [Crossref]
  20. A. Kumar, P. Tyagi, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer,” Appl. Phys. Lett. 102(20), 203304 (2013).
    [Crossref]
  21. A. Arriola, A. Rodriguez, N. Perez, T. Tavera, M. J. Withford, A. Fuerbach, and S. M. Olaizola, “Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors,” Opt. Mater. Express 2(11), 1571–1579 (2012).
    [Crossref]
  22. A. Iqbal, L. Wang, K. C. Thompson, D. M. J. Lilley, and D. G. Norman, “The structure of cyanine 5 terminally attached to double-stranded DNA: Implications for FRET studies,” Biochemistry 47(30), 7857–7862 (2008).
    [Crossref] [PubMed]
  23. B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
    [Crossref] [PubMed]
  24. W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
    [Crossref] [PubMed]
  25. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express 19(7), 6450–6461 (2011).
    [Crossref] [PubMed]
  26. N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
    [Crossref] [PubMed]
  27. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating Surface Plasmon Induced Photon Emission from Quantum Dots,” Nano Lett. 9(12), 4168–4171 (2009).
    [Crossref] [PubMed]
  28. R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
    [Crossref] [PubMed]
  29. Y. D. Zhao, X. Liu, D. Y. Lei, and Y. Chai, “Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain,” Nanoscale 6(3), 1311–1317 (2014).
    [Crossref] [PubMed]
  30. A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of strong coupling between quantum emitters and propagating surface plasmons,” Phys. Rev. Lett. 110(12), 126801 (2013).
    [Crossref] [PubMed]
  31. J. del Pino, J. Feist, F. J. Garcia-Vidal, and J. J. Garcia-Ripoll, “Entanglement detection in coupled particle plasmons,” Phys. Rev. Lett. 112(21), 216805 (2014).
    [Crossref]
  32. X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
    [Crossref] [PubMed]
  33. Y. Zelinskyy and V. May, “Photoinduced switching of the current through a single molecule: effects of surface plasmon excitations of the leads,” Nano Lett. 12(1), 446–452 (2012).
    [Crossref] [PubMed]
  34. H. Yoon, S. A. Maier, D. D. C. Bradley, and P. N. Stavrinou, “Surface plasmon coupled emission using conjugated light-emitting polymer films Invited,” Opt. Mater. Express 1(6), 1127–1138 (2011).
    [Crossref]
  35. Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
    [Crossref] [PubMed]
  36. D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
    [Crossref] [PubMed]
  37. Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
    [Crossref]
  38. Q. C. Sun, J. Casamada-Ribot, V. Singh, H. Mundoor, I. I. Smalyukh, and P. Nagpal, “Effect of plasmon-enhancement on photophysics in upconverting nanoparticles,” Opt. Express 22(10), 11516–11527 (2014).
    [Crossref] [PubMed]
  39. A. E. Ragab, A. S. Gadallah, T. Da Ros, M. B. Mohamed, and I. M. Azzouz, “Ag surface plasmon enhances luminescence of CdTe QDs,” Opt. Commun. 314, 86–89 (2014).
    [Crossref]
  40. H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
    [Crossref] [PubMed]
  41. Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
    [Crossref] [PubMed]
  42. Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
    [Crossref]
  43. X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4(11), 2223–2226 (2004).
    [Crossref]
  44. M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
    [Crossref]
  45. Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
    [Crossref]
  46. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
    [Crossref] [PubMed]
  47. D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
    [Crossref] [PubMed]
  48. Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
    [Crossref] [PubMed]

2014 (13)

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

H. Sharma, M. A. Digman, N. Felsinger, E. Gratton, and M. Khine, “Enhanced emission of fluorophores on shrink-induced wrinkled composite structures,” Opt. Mater. Express 4(4), 753–763 (2014).
[Crossref] [PubMed]

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

F. Rüting, J. Cuerda, J. Bravo-Abad, and F. J. Garcia-Vidal, “Lasing action assisted by long-range surface plasmons,” Laser and Photon. Rev. 8(5), L65–L70 (2014).
[Crossref]

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Y. D. Zhao, X. Liu, D. Y. Lei, and Y. Chai, “Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain,” Nanoscale 6(3), 1311–1317 (2014).
[Crossref] [PubMed]

J. del Pino, J. Feist, F. J. Garcia-Vidal, and J. J. Garcia-Ripoll, “Entanglement detection in coupled particle plasmons,” Phys. Rev. Lett. 112(21), 216805 (2014).
[Crossref]

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Q. C. Sun, J. Casamada-Ribot, V. Singh, H. Mundoor, I. I. Smalyukh, and P. Nagpal, “Effect of plasmon-enhancement on photophysics in upconverting nanoparticles,” Opt. Express 22(10), 11516–11527 (2014).
[Crossref] [PubMed]

A. E. Ragab, A. S. Gadallah, T. Da Ros, M. B. Mohamed, and I. M. Azzouz, “Ag surface plasmon enhances luminescence of CdTe QDs,” Opt. Commun. 314, 86–89 (2014).
[Crossref]

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

2013 (6)

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of strong coupling between quantum emitters and propagating surface plasmons,” Phys. Rev. Lett. 110(12), 126801 (2013).
[Crossref] [PubMed]

A. Kumar, P. Tyagi, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer,” Appl. Phys. Lett. 102(20), 203304 (2013).
[Crossref]

C. G. L. Ferri, R. H. Inman, B. Rich, A. Gopinathan, M. Khine, and S. Ghosh, “Plasmon-induced enhancement of intra-ensemble FRET in quantum dots on wrinkled thin films,” Opt. Mater. Express 3(3), 383–389 (2013).
[Crossref]

2012 (4)

J. Zhu, J. J. Li, and J. W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics 7(2), 201–207 (2012).
[Crossref]

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

A. Arriola, A. Rodriguez, N. Perez, T. Tavera, M. J. Withford, A. Fuerbach, and S. M. Olaizola, “Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors,” Opt. Mater. Express 2(11), 1571–1579 (2012).
[Crossref]

Y. Zelinskyy and V. May, “Photoinduced switching of the current through a single molecule: effects of surface plasmon excitations of the leads,” Nano Lett. 12(1), 446–452 (2012).
[Crossref] [PubMed]

2011 (3)

H. Yoon, S. A. Maier, D. D. C. Bradley, and P. N. Stavrinou, “Surface plasmon coupled emission using conjugated light-emitting polymer films Invited,” Opt. Mater. Express 1(6), 1127–1138 (2011).
[Crossref]

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express 19(7), 6450–6461 (2011).
[Crossref] [PubMed]

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

2010 (3)

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

2009 (7)

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[Crossref] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating Surface Plasmon Induced Photon Emission from Quantum Dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

T. Shimada, S. Tomita, S. Hotta, S. Hayashi, and H. Yanagi, “Photoluminescence from donor-acceptor molecular systems via long distance energy transfer mediated by surface plasmons,” Jpn. J. Appl. Phys. 48(4), 042001 (2009).
[Crossref]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[Crossref] [PubMed]

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

2008 (7)

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[Crossref]

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

A. Iqbal, L. Wang, K. C. Thompson, D. M. J. Lilley, and D. G. Norman, “The structure of cyanine 5 terminally attached to double-stranded DNA: Implications for FRET studies,” Biochemistry 47(30), 7857–7862 (2008).
[Crossref] [PubMed]

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

2007 (1)

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

2004 (2)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[Crossref] [PubMed]

X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4(11), 2223–2226 (2004).
[Crossref]

2003 (2)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, “Optical schemes for quantum computation in quantum dot molecules,” Phys. Rev. B 68(20), 205319 (2003).
[Crossref]

Adamo, G.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Ahn, C. W.

Andrew, P.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[Crossref] [PubMed]

Arriola, A.

Azzouz, I. M.

A. E. Ragab, A. S. Gadallah, T. Da Ros, M. B. Mohamed, and I. M. Azzouz, “Ag surface plasmon enhances luminescence of CdTe QDs,” Opt. Commun. 314, 86–89 (2014).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Banholzer, M. J.

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

Barnes, W. L.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Beavil, A. J.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Bradley, A. L.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Bradley, D. D. C.

Bravo-Abad, J.

F. Rüting, J. Cuerda, J. Bravo-Abad, and F. J. Garcia-Vidal, “Lasing action assisted by long-range surface plasmons,” Laser and Photon. Rev. 8(5), L65–L70 (2014).
[Crossref]

Briggs, G. A. D.

B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, “Optical schemes for quantum computation in quantum dot molecules,” Phys. Rev. B 68(20), 205319 (2003).
[Crossref]

Buyanova, I. A.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Cain, K.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Casamada-Ribot, J.

Chai, Y.

Y. D. Zhao, X. Liu, D. Y. Lei, and Y. Chai, “Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain,” Nanoscale 6(3), 1311–1317 (2014).
[Crossref] [PubMed]

Chen, H.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Chen, R.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Chen, S. L.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Chen, W. M.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Chen, X. D.

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

Chen, Z. Y.

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Choi, K. C.

Cossins, B. P.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Cuerda, J.

F. Rüting, J. Cuerda, J. Bravo-Abad, and F. J. Garcia-Vidal, “Lasing action assisted by long-range surface plasmons,” Laser and Photon. Rev. 8(5), L65–L70 (2014).
[Crossref]

Da Ros, T.

A. E. Ragab, A. S. Gadallah, T. Da Ros, M. B. Mohamed, and I. M. Azzouz, “Ag surface plasmon enhances luminescence of CdTe QDs,” Opt. Commun. 314, 86–89 (2014).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

del Pino, J.

J. del Pino, J. Feist, F. J. Garcia-Vidal, and J. J. Garcia-Ripoll, “Entanglement detection in coupled particle plasmons,” Phys. Rev. Lett. 112(21), 216805 (2014).
[Crossref]

Delgado, J.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Devika, M.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Digman, M. A.

Drinkwater, N.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Durach, M.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[Crossref]

Fan, H. J.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Fang, C.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Fang, Y.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[Crossref] [PubMed]

Feist, J.

J. del Pino, J. Feist, F. J. Garcia-Vidal, and J. J. Garcia-Ripoll, “Entanglement detection in coupled particle plasmons,” Phys. Rev. Lett. 112(21), 216805 (2014).
[Crossref]

Felsinger, N.

Feng, J.

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

Ferri, C. G. L.

Filippov, S.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Fréchet, J. M. J.

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

Fuerbach, A.

Gadallah, A. S.

A. E. Ragab, A. S. Gadallah, T. Da Ros, M. B. Mohamed, and I. M. Azzouz, “Ag surface plasmon enhances luminescence of CdTe QDs,” Opt. Commun. 314, 86–89 (2014).
[Crossref]

Gao, H. F.

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

Gaponik, N.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Garcia-Ripoll, J. J.

J. del Pino, J. Feist, F. J. Garcia-Vidal, and J. J. Garcia-Ripoll, “Entanglement detection in coupled particle plasmons,” Phys. Rev. Lett. 112(21), 216805 (2014).
[Crossref]

Garcia-Vidal, F. J.

J. del Pino, J. Feist, F. J. Garcia-Vidal, and J. J. Garcia-Ripoll, “Entanglement detection in coupled particle plasmons,” Phys. Rev. Lett. 112(21), 216805 (2014).
[Crossref]

F. Rüting, J. Cuerda, J. Bravo-Abad, and F. J. Garcia-Vidal, “Lasing action assisted by long-range surface plasmons,” Laser and Photon. Rev. 8(5), L65–L70 (2014).
[Crossref]

García-Vidal, F. J.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of strong coupling between quantum emitters and propagating surface plasmons,” Phys. Rev. Lett. 110(12), 126801 (2013).
[Crossref] [PubMed]

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Gerard, V. A.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Gerardot, B. D.

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

Ghosh, S.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gong, Q. H.

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

González-Tudela, A.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of strong coupling between quantum emitters and propagating surface plasmons,” Phys. Rev. Lett. 110(12), 126801 (2013).
[Crossref] [PubMed]

Gopinathan, A.

Govorov, A. O.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Gratton, E.

Graugnard, E.

X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4(11), 2223–2226 (2004).
[Crossref]

Gu, T.

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

Gu, Y.

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

Gun’ko, Y. K.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Hailu, H.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Han, J. B.

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

Hao, F.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[Crossref] [PubMed]

Hao, Z. H.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

Hayashi, S.

T. Shimada, S. Tomita, S. Hotta, S. Hayashi, and H. Yanagi, “Photoluminescence from donor-acceptor molecular systems via long distance energy transfer mediated by surface plasmons,” Jpn. J. Appl. Phys. 48(4), 042001 (2009).
[Crossref]

Henry, A. J.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hotta, S.

T. Shimada, S. Tomita, S. Hotta, S. Hayashi, and H. Yanagi, “Photoluminescence from donor-acceptor molecular systems via long distance energy transfer mediated by surface plasmons,” Jpn. J. Appl. Phys. 48(4), 042001 (2009).
[Crossref]

Huang, Y.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[Crossref] [PubMed]

Huidobro, P. A.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of strong coupling between quantum emitters and propagating surface plasmons,” Phys. Rev. Lett. 110(12), 126801 (2013).
[Crossref] [PubMed]

Inman, R. H.

Iqbal, A.

A. Iqbal, L. Wang, K. C. Thompson, D. M. J. Lilley, and D. G. Norman, “The structure of cyanine 5 terminally attached to double-stranded DNA: Implications for FRET studies,” Biochemistry 47(30), 7857–7862 (2008).
[Crossref] [PubMed]

Jiang, R.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Jiang, X.

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

Jin, C. J.

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Kamalasanan, M. N.

A. Kumar, P. Tyagi, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer,” Appl. Phys. Lett. 102(20), 203304 (2013).
[Crossref]

Kao, M. W. P.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Kawata, S.

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

Keeble, A. H.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Khine, M.

Kildishev, A. V.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[Crossref] [PubMed]

Kim, N. C.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

King, J. S.

X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4(11), 2223–2226 (2004).
[Crossref]

Klimov, V. I.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[Crossref]

Koteeswara Reddy, N.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Kumar, A.

A. Kumar, P. Tyagi, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer,” Appl. Phys. Lett. 102(20), 203304 (2013).
[Crossref]

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Lei, D. Y.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Y. D. Zhao, X. Liu, D. Y. Lei, and Y. Chai, “Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain,” Nanoscale 6(3), 1311–1317 (2014).
[Crossref] [PubMed]

Lesnyak, V.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Li, B.

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Li, J. B.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Li, J. J.

J. Zhu, J. J. Li, and J. W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics 7(2), 201–207 (2012).
[Crossref]

Li, J. T.

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Li, M.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

Li, S. Z.

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

Li, X. E.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating Surface Plasmon Induced Photon Emission from Quantum Dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Li, Y.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Li, Z.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[Crossref] [PubMed]

Li, Z. X.

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Lilley, D. M. J.

A. Iqbal, L. Wang, K. C. Thompson, D. M. J. Lilley, and D. G. Norman, “The structure of cyanine 5 terminally attached to double-stranded DNA: Implications for FRET studies,” Biochemistry 47(30), 7857–7862 (2008).
[Crossref] [PubMed]

Link, S.

Liu, G.

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

Liu, J.

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Liu, J. M.

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Liu, M.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Liu, R.

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

Liu, T.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Liu, T. R.

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Liu, X.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Y. D. Zhao, X. Liu, D. Y. Lei, and Y. Chai, “Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain,” Nanoscale 6(3), 1311–1317 (2014).
[Crossref] [PubMed]

Lovett, B. W.

B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, “Optical schemes for quantum computation in quantum dot molecules,” Phys. Rev. B 68(20), 205319 (2003).
[Crossref]

Lunz, M.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Lyvers, D. P.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[Crossref] [PubMed]

Ma, B. W.

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

MacDonald, K. F.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Maier, S. A.

Marocico, C. A.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Martín-Cano, D.

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Martín-Moreno, L.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of strong coupling between quantum emitters and propagating surface plasmons,” Phys. Rev. Lett. 110(12), 126801 (2013).
[Crossref] [PubMed]

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

May, V.

Y. Zelinskyy and V. May, “Photoinduced switching of the current through a single molecule: effects of surface plasmon excitations of the leads,” Nano Lett. 12(1), 446–452 (2012).
[Crossref] [PubMed]

Mayy, M.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

McDonnell, J. M.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Mehta, D. S.

A. Kumar, P. Tyagi, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer,” Appl. Phys. Lett. 102(20), 203304 (2013).
[Crossref]

Millstone, J. E.

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

Ming, T.

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

Mirkin, C. A.

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

Mohamed, M. B.

A. E. Ragab, A. S. Gadallah, T. Da Ros, M. B. Mohamed, and I. M. Azzouz, “Ag surface plasmon enhances luminescence of CdTe QDs,” Opt. Commun. 314, 86–89 (2014).
[Crossref]

Moon, J.-M.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[Crossref] [PubMed]

Moreno, E.

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Mundoor, H.

Nagpal, P.

Naraoka, R.

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nazir, A.

B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, “Optical schemes for quantum computation in quantum dot molecules,” Phys. Rev. B 68(20), 205319 (2003).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

Nordlander, P.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[Crossref] [PubMed]

Norman, D. G.

A. Iqbal, L. Wang, K. C. Thompson, D. M. J. Lilley, and D. G. Norman, “The structure of cyanine 5 terminally attached to double-stranded DNA: Implications for FRET studies,” Biochemistry 47(30), 7857–7862 (2008).
[Crossref] [PubMed]

Okamoto, T.

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

Olaizola, S. M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Oxbrow, A.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Peng, X. N.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Perez, N.

Podolskiy, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

Poulsen, D. A.

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

Qin, L. D.

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

Ragab, A. E.

A. E. Ragab, A. S. Gadallah, T. Da Ros, M. B. Mohamed, and I. M. Azzouz, “Ag surface plasmon enhances luminescence of CdTe QDs,” Opt. Commun. 314, 86–89 (2014).
[Crossref]

Ratchford, D.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating Surface Plasmon Induced Photon Emission from Quantum Dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Reina, J. H.

B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, “Optical schemes for quantum computation in quantum dot molecules,” Phys. Rev. B 68(20), 205319 (2003).
[Crossref]

Ren, Q. J.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Rich, B.

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

Rodriguez, A.

Rogach, A. L.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Rusina, A.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[Crossref]

Rüting, F.

F. Rüting, J. Cuerda, J. Bravo-Abad, and F. J. Garcia-Vidal, “Lasing action assisted by long-range surface plasmons,” Laser and Photon. Rev. 8(5), L65–L70 (2014).
[Crossref]

Schatz, G. C.

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[Crossref] [PubMed]

Shan, X. Y.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Sharma, H.

Shih, C. K.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating Surface Plasmon Induced Photon Emission from Quantum Dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Shimada, T.

T. Shimada, S. Tomita, S. Hotta, S. Hayashi, and H. Yanagi, “Photoluminescence from donor-acceptor molecular systems via long distance energy transfer mediated by surface plasmons,” Jpn. J. Appl. Phys. 48(4), 042001 (2009).
[Crossref]

Shuttleworth, L. K.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Sie, E. J.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Singh, V.

Smalyukh, I. I.

Song, H.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Srivastava, R.

A. Kumar, P. Tyagi, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer,” Appl. Phys. Lett. 102(20), 203304 (2013).
[Crossref]

Stavrinou, P. N.

Stockman, M. I.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Su, X. R.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

Sum, T. C.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Summers, C. J.

X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4(11), 2223–2226 (2004).
[Crossref]

Sun, H.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Sun, Q. C.

Susha, A. S.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sutton, B. J.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Tavera, T.

Tejedor, C.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of strong coupling between quantum emitters and propagating surface plasmons,” Phys. Rev. Lett. 110(12), 126801 (2013).
[Crossref] [PubMed]

Thompson, K. C.

A. Iqbal, L. Wang, K. C. Thompson, D. M. J. Lilley, and D. G. Norman, “The structure of cyanine 5 terminally attached to double-stranded DNA: Implications for FRET studies,” Biochemistry 47(30), 7857–7862 (2008).
[Crossref] [PubMed]

Tomita, S.

T. Shimada, S. Tomita, S. Hotta, S. Hayashi, and H. Yanagi, “Photoluminescence from donor-acceptor molecular systems via long distance energy transfer mediated by surface plasmons,” Jpn. J. Appl. Phys. 48(4), 042001 (2009).
[Crossref]

Tu, C. W.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Tyagi, P.

A. Kumar, P. Tyagi, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer,” Appl. Phys. Lett. 102(20), 203304 (2013).
[Crossref]

Unruh, D. A.

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

Wang, J.

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Wang, L.

A. Iqbal, L. Wang, K. C. Thompson, D. M. J. Lilley, and D. G. Norman, “The structure of cyanine 5 terminally attached to double-stranded DNA: Implications for FRET studies,” Biochemistry 47(30), 7857–7862 (2008).
[Crossref] [PubMed]

Wang, P.

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

Wang, Q. Q.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Wang, X.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Wang, X. D.

X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4(11), 2223–2226 (2004).
[Crossref]

Wang, X. H.

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Wang, Z. L.

X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4(11), 2223–2226 (2004).
[Crossref]

Wei, A.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[Crossref] [PubMed]

Wei, H.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating Surface Plasmon Induced Photon Emission from Quantum Dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Wei, W.

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Willingham, B.

Withford, M. J.

Wright, M.

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Wu, J. R.

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

Xu, H.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating Surface Plasmon Induced Photon Emission from Quantum Dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[Crossref] [PubMed]

Xu, X. Y.

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

Xue, C.

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

Xue, J.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Yanagi, H.

T. Shimada, S. Tomita, S. Hotta, S. Hayashi, and H. Yanagi, “Photoluminescence from donor-acceptor molecular systems via long distance energy transfer mediated by surface plasmons,” Jpn. J. Appl. Phys. 48(4), 042001 (2009).
[Crossref]

Yang, K. Y.

Yang, Z. J.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Yoon, H.

Yu, J. C.

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

Yu, X. F.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Yu, Y.

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Yu, Y. C.

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Zelinskyy, Y.

Y. Zelinskyy and V. May, “Photoinduced switching of the current through a single molecule: effects of surface plasmon excitations of the leads,” Nano Lett. 12(1), 446–452 (2012).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhai, Y. Y.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

Zhang, H.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Zhang, J. X.

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

Zhang, Q.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Zhang, T. C.

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

Zhang, X.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, Z. S.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Zhang, Z. Y.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Zhao, D. X.

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

Zhao, J. W.

J. Zhu, J. J. Li, and J. W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics 7(2), 201–207 (2012).
[Crossref]

Zhao, X. Y.

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

Zhao, Y. D.

Y. D. Zhao, X. Liu, D. Y. Lei, and Y. Chai, “Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain,” Nanoscale 6(3), 1311–1317 (2014).
[Crossref] [PubMed]

Zheludev, N. I.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Zhou, J. H.

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

Zhou, L.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Zhou, Z. K.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, J. J. Li, and J. W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics 7(2), 201–207 (2012).
[Crossref]

Zhu, Q.

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

ACS Nano (4)

B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, and J. C. Yu, “(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light,” ACS Nano 8(8), 8152–8162 (2014).
[Crossref] [PubMed]

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer,” ACS Nano 8(2), 1273–1283 (2014).
[Crossref] [PubMed]

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[Crossref] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Adv. Optical Mater. (1)

Z. K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, “Shaping the emission spectral profile of quantum dots with periodic dielectric and metallic nanostructure,” Adv. Optical Mater. 2(1), 56–64 (2014).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires,” Angew. Chem. Int. Ed. Engl. 48(23), 4210–4212 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

A. Kumar, P. Tyagi, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, “Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer,” Appl. Phys. Lett. 102(20), 203304 (2013).
[Crossref]

Biochemistry (1)

A. Iqbal, L. Wang, K. C. Thompson, D. M. J. Lilley, and D. G. Norman, “The structure of cyanine 5 terminally attached to double-stranded DNA: Implications for FRET studies,” Biochemistry 47(30), 7857–7862 (2008).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

Z. X. Li, Y. Yu, Z. Y. Chen, T. R. Liu, Z. K. Zhou, J. B. Han, J. T. Li, C. J. Jin, and X. H. Wang, “Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance,” J. Phys. Chem. C 117(39), 20127–20132 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Shimada, S. Tomita, S. Hotta, S. Hayashi, and H. Yanagi, “Photoluminescence from donor-acceptor molecular systems via long distance energy transfer mediated by surface plasmons,” Jpn. J. Appl. Phys. 48(4), 042001 (2009).
[Crossref]

Laser and Photon. Rev. (1)

F. Rüting, J. Cuerda, J. Bravo-Abad, and F. J. Garcia-Vidal, “Lasing action assisted by long-range surface plasmons,” Laser and Photon. Rev. 8(5), L65–L70 (2014).
[Crossref]

Nano Lett. (8)

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating Surface Plasmon Induced Photon Emission from Quantum Dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[Crossref] [PubMed]

Y. Zelinskyy and V. May, “Photoinduced switching of the current through a single molecule: effects of surface plasmon excitations of the leads,” Nano Lett. 12(1), 446–452 (2012).
[Crossref] [PubMed]

W. Wei, S. Z. Li, L. D. Qin, C. Xue, J. E. Millstone, X. Y. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett. 8(10), 3446–3449 (2008).
[Crossref] [PubMed]

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

H. F. Gao, D. A. Poulsen, B. W. Ma, D. A. Unruh, X. Y. Zhao, J. E. Millstone, and J. M. J. Fréchet, “Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence,” Nano Lett. 10(4), 1440–1444 (2010).
[Crossref] [PubMed]

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4(11), 2223–2226 (2004).
[Crossref]

Nanophotonic (1)

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonic 2(2), 153–160 (2013).
[Crossref]

Nanoscale (2)

Y. D. Zhao, X. Liu, D. Y. Lei, and Y. Chai, “Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain,” Nanoscale 6(3), 1311–1317 (2014).
[Crossref] [PubMed]

R. Liu, J. H. Zhou, Z. K. Zhou, X. Jiang, J. Liu, G. Liu, and X. H. Wang, “On-demand shape and size purification of nanoparticle based on surface area,” Nanoscale 6(21), 13145–13153 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref] [PubMed]

Nat. Struct. Mol. Biol. (1)

N. Drinkwater, B. P. Cossins, A. H. Keeble, M. Wright, K. Cain, H. Hailu, A. Oxbrow, J. Delgado, L. K. Shuttleworth, M. W. P. Kao, J. M. McDonnell, A. J. Beavil, A. J. Henry, and B. J. Sutton, “Human immunoglobulin E flexes between acutely bent and extended conformations,” Nat. Struct. Mol. Biol. 21(4), 397–404 (2014).
[Crossref] [PubMed]

Nature (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[Crossref]

Opt. Commun. (1)

A. E. Ragab, A. S. Gadallah, T. Da Ros, M. B. Mohamed, and I. M. Azzouz, “Ag surface plasmon enhances luminescence of CdTe QDs,” Opt. Commun. 314, 86–89 (2014).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (4)

Phys. Rev. B (3)

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

D. X. Zhao, Y. Gu, J. R. Wu, J. X. Zhang, T. C. Zhang, B. D. Gerardot, and Q. H. Gong, “Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization,” Phys. Rev. B 89(24), 245433 (2014).
[Crossref]

B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, “Optical schemes for quantum computation in quantum dot molecules,” Phys. Rev. B 68(20), 205319 (2003).
[Crossref]

Phys. Rev. Lett. (4)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of strong coupling between quantum emitters and propagating surface plasmons,” Phys. Rev. Lett. 110(12), 126801 (2013).
[Crossref] [PubMed]

J. del Pino, J. Feist, F. J. Garcia-Vidal, and J. J. Garcia-Ripoll, “Entanglement detection in coupled particle plasmons,” Phys. Rev. Lett. 112(21), 216805 (2014).
[Crossref]

Phys. Status Solidi A (1)

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[Crossref]

Plasmonics (1)

J. Zhu, J. J. Li, and J. W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics 7(2), 201–207 (2012).
[Crossref]

Science (1)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image of an Ag island film. Inset is the measured absorption spectrum of the Ag island film at normal incidence;(b) Pulse cycle dependence of Al2O3 layer’s thickness (c) SEM image of an Ag island film with 4 nm Al2O3 spacer layer. Inset is the SEM image of the 4 nm Al2O3 coated Ag island film with combined QDs spin dispersed on the surface. The scale bar of inset is 50 nm.
Fig. 2
Fig. 2 (a) and (b) PL spectra of the pure and mixed QDs on Ag island film and silica substrate. The emissions around 605 and 655 nm are attributed to the QDs_D and QDs_A, respectively. The black solid and dash curves in (a) represent the PL spectra of the QDs_D and QDs_A on the silica substrate as a reference, respectively. The dash black line of (b) is the PL spectrum of QDs on pristine Ag island film. (c) The PL plasmon enhancement factors of QDs. (d) The PL intensity ratio of QDs_A to QDs_D for pure QDs (blue) and mixed QDs (red).
Fig. 3
Fig. 3 (a) and (b) Normalized time-resolved PL spectra of the QDs_D and QDs_A on the quartz substrate and Ag island films with varying thicknesses of the Al2O3 spacer layer. (c) and (d) The calculated emission rate (blue) and normalized weight factors of the fast decay component of the QDs_D and QDs_A on Ag island films with varying thicknesses of the Al2O3 spacer layer. As the thickness of the spacer layers decreasing from 16 nm to 4 nm, the fast emission rate of the QDs_D increases from 0.45 to 0.51 ns−1 and the corresponding normalized Af rate rises from 47.3% to 94.8%; the fast emission rate of the QDs_A accelerates from 0.32 to 0.38 ns−1 and the corresponding normalized Af rate enhances from 79.8% to 95.4%.
Fig. 4
Fig. 4 (a) 3D model of disordered film with 4 nm isolated layer on silica substrate. (b) Electric field distribution of Ag film with different height from the surface of silica substrate at the wavelength of 400 and 605 nm. (c) The calculated normalized energy transfer rate of QDs on Ag island film coated by Al2O3 layer with varying thicknesses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I PL ( t ) = A f e t / t f + A s e t / t s
I ( D-A ) A N ( D ) | f ( D ) ( λ e x c ) | 2 n E T R N ( A ) n E T R = | n A G ( r A , r D , ω ) n D | 2 | n A G v a c ( r A , r D , ω ) n D | 2 = | n A E D ( r A , ω ) | 2 | n A E D , v a c ( r A , ω ) | 2

Metrics