Abstract

Chirality is a fundamental property of molecules and materials leading to very interesting optical activity effects. Classical optical effectivity effects such as optical rotation and circular dichroism have been known for many years and are of crucial importance to investigate the structure of molecules and to elucidate the secondary structure of biomolecules. Other optical activity effects also exist, both in linear and nonlinear optics, and are becoming increasingly important. Furthermore, new chiral materials based on nanoscale building blocks show very peculiar and new optical effects that can have important applications. The 16 papers in this feature issue focus on several new aspects of the role of chirality in optical phenomena in a variety of materials.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feature issue introduction: optical ceramics

Jas Sanghera, Takunori Taira, and Hong Jin Kong
Opt. Mater. Express 4(10) 2221-2224 (2014)

Nonlinear Optics: feature issue introduction

Cornelia Denz, David J. Hagan, Robert Boyd, Claudio Conti, Antonio Mecozzi, and Alessandro Salandrino
Opt. Mater. Express 10(3) 774-776 (2020)

Feature issue introduction: optical materials for flat panel displays

Wei Lee, Jongwook Park, Vivek Subramanian, and Hideo Takezoe
Opt. Mater. Express 4(5) 1088-1091 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 1982).
  2. F. Egidi, I. Carnimeo, and C. Cappelli, “The optical rotatory dispersion of methyloxirane in aqueous solution: assessing the performance of density functional theory in combination with a fully polarizable QM/MM/PCM approach,” Opt. Mater. Express 5(1), 196–209 (2015).
  3. T. Verbiest, K. Clays, and V. Rodriguez, Nonlinear Optical Characterization Techniques: An Introduction (CRC press, 2009).
  4. A. Bruyère, E. Benichou, L. Guy, A. Bensalah-Ledoux, S. Guy, and P.-F. Brevet, “Reversibility of the supramolecular chirality of bridged binaphtol derivatives at the air-water interface,” Opt. Mater. Express 4(12), 2516–2524 (2014).
    [Crossref]
  5. M. J. Huttunen, M. Partanen, G. Bautista, S.-W. Chu, and M. Kauranen, “Nonlinear optical activity effects in complex anisotropic three-dimensional media,” Opt. Mater. Express 5 (1), 11–21 (2015).
  6. G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
    [Crossref]
  7. S. Hattori and K. Ishii, “Magneto-chiral dichroism of aromatic π conjugated systems,” Opt. Mater. Express 4(11), 2423–2432 (2014).
    [Crossref]
  8. R. Mathevet and G. Rikken, “Magnetic circular dichroism as a local probe of the polarization of a focused Gaussian beam,” Opt. Mater. Express 4, 2574–2585 (2014).
  9. P. G. de Gennes, J. Prost, The Principle of Liquid Crystals (Oxford, 1993).
  10. S. Chen, P. Wu, and W. Lee, “Dielectric and phase behaviors of blue-phase liquid crystals,” Opt. Mater. Express 4(11), 2392–2400 (2014).
    [Crossref]
  11. G. Lin, T. Chen, Y. Lin, J. Wu, and Y. Yang, “Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields,” Opt. Mater. Express 4(12), 2468–2477 (2014).
    [Crossref]
  12. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [Crossref] [PubMed]
  13. N. Potravkin, E. Cherepetskaya, I. Perezhogin, and V. Makarov, “Ultrashort elliptically polarized laser pulse interaction with helical photonic metamaterial,” Opt. Mater. Express 4(10), 2090–2101 (2014).
    [Crossref]
  14. A. Chadha, D. Zhao, and W. Zhou, “Comparative study of metallic and dielectric helix photonic metamaterial,” Opt. Mater. Express 4(12), 2460–2467 (2014).
    [Crossref]
  15. S. Kaya, “Circular dichroism from windmill-shaped planar structures operating in mid-infrared regime,” Opt. Mater. Express 4(11), 2332–2339 (2014).
    [Crossref]
  16. T. W. H. Oates, T. Shaykhutdinov, T. Wagner, A. Furchner, and K. Hinrichs, “Mid-infrared gyrotropy in split-ring resonators measured by Mueller matrix ellipsometry,” Opt. Mater. Express 4(12), 2646–2655 (2014).
  17. M. Moocarme, B. Kusin, and L. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 2355–2367 (2014).
    [Crossref]
  18. K. Lee, J. Wu, and K. Kim, “Defect modes in a one-dimensional photonic crystal with a chiral defect layer,” Opt. Mater. Express 4(12), 2542–2550 (2014).
    [Crossref]
  19. S. Ching, G. Li, H. Tam, D. Goh, J. Goh, and K. Cheah, “Chirality in Rhomborhina Gigantea beetle,” Opt. Mater. Express 4(11), 2340–2345 (2014).
    [Crossref]
  20. A. Mendoza-Galván, E. Muñoz-Pineda, K. Järrendahl, and H. Arwin, “Evidence for a dispersion relation of optical modes in the cuticle of the scarab beetle Cotinis mutabilis,” Opt. Mater. Express 4(12), 2484–2496 (2014).
    [Crossref]
  21. M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, C. Barboza-Aguilar, Á. Solís, L. Arce-Marenco, I. García-Aguilar, A. Hernández, and W. E. Vargas, “Qualitative correlation between structural chirality through the cuticle of Chrysina aurigans scarabs and left-handed circular polarization of the reflected light,” Opt. Mater. Express 4(12), 2632–2645 (2014).

2015 (2)

2014 (14)

A. Bruyère, E. Benichou, L. Guy, A. Bensalah-Ledoux, S. Guy, and P.-F. Brevet, “Reversibility of the supramolecular chirality of bridged binaphtol derivatives at the air-water interface,” Opt. Mater. Express 4(12), 2516–2524 (2014).
[Crossref]

S. Hattori and K. Ishii, “Magneto-chiral dichroism of aromatic π conjugated systems,” Opt. Mater. Express 4(11), 2423–2432 (2014).
[Crossref]

R. Mathevet and G. Rikken, “Magnetic circular dichroism as a local probe of the polarization of a focused Gaussian beam,” Opt. Mater. Express 4, 2574–2585 (2014).

S. Chen, P. Wu, and W. Lee, “Dielectric and phase behaviors of blue-phase liquid crystals,” Opt. Mater. Express 4(11), 2392–2400 (2014).
[Crossref]

G. Lin, T. Chen, Y. Lin, J. Wu, and Y. Yang, “Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields,” Opt. Mater. Express 4(12), 2468–2477 (2014).
[Crossref]

N. Potravkin, E. Cherepetskaya, I. Perezhogin, and V. Makarov, “Ultrashort elliptically polarized laser pulse interaction with helical photonic metamaterial,” Opt. Mater. Express 4(10), 2090–2101 (2014).
[Crossref]

A. Chadha, D. Zhao, and W. Zhou, “Comparative study of metallic and dielectric helix photonic metamaterial,” Opt. Mater. Express 4(12), 2460–2467 (2014).
[Crossref]

S. Kaya, “Circular dichroism from windmill-shaped planar structures operating in mid-infrared regime,” Opt. Mater. Express 4(11), 2332–2339 (2014).
[Crossref]

T. W. H. Oates, T. Shaykhutdinov, T. Wagner, A. Furchner, and K. Hinrichs, “Mid-infrared gyrotropy in split-ring resonators measured by Mueller matrix ellipsometry,” Opt. Mater. Express 4(12), 2646–2655 (2014).

M. Moocarme, B. Kusin, and L. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 2355–2367 (2014).
[Crossref]

K. Lee, J. Wu, and K. Kim, “Defect modes in a one-dimensional photonic crystal with a chiral defect layer,” Opt. Mater. Express 4(12), 2542–2550 (2014).
[Crossref]

S. Ching, G. Li, H. Tam, D. Goh, J. Goh, and K. Cheah, “Chirality in Rhomborhina Gigantea beetle,” Opt. Mater. Express 4(11), 2340–2345 (2014).
[Crossref]

A. Mendoza-Galván, E. Muñoz-Pineda, K. Järrendahl, and H. Arwin, “Evidence for a dispersion relation of optical modes in the cuticle of the scarab beetle Cotinis mutabilis,” Opt. Mater. Express 4(12), 2484–2496 (2014).
[Crossref]

M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, C. Barboza-Aguilar, Á. Solís, L. Arce-Marenco, I. García-Aguilar, A. Hernández, and W. E. Vargas, “Qualitative correlation between structural chirality through the cuticle of Chrysina aurigans scarabs and left-handed circular polarization of the reflected light,” Opt. Mater. Express 4(12), 2632–2645 (2014).

2013 (1)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

1997 (1)

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
[Crossref]

Arce-Marenco, L.

Arwin, H.

Azofeifa, D. E.

Barboza-Aguilar, C.

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Bautista, G.

Benichou, E.

Bensalah-Ledoux, A.

Brevet, P.-F.

Bruyère, A.

Cappelli, C.

Carnimeo, I.

Chadha, A.

Cheah, K.

Chen, S.

Chen, T.

Cherepetskaya, E.

Ching, S.

Chu, S.-W.

Egidi, F.

Furchner, A.

García-Aguilar, I.

Goh, D.

Goh, J.

Guy, L.

Guy, S.

Hattori, S.

Hernández, A.

Hernández-Jiménez, M.

Hinrichs, K.

Huttunen, M. J.

Ishii, K.

Järrendahl, K.

Kauranen, M.

Kaya, S.

Kim, K.

Kusin, B.

Lee, K.

Lee, W.

Li, G.

Libby, E.

Lin, G.

Lin, Y.

Makarov, V.

Mathevet, R.

Mendoza-Galván, A.

Moocarme, M.

Muñoz-Pineda, E.

Oates, T. W. H.

Partanen, M.

Perezhogin, I.

Potravkin, N.

Raupach, E.

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
[Crossref]

Rikken, G.

Rikken, G. L. J. A.

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
[Crossref]

Shaykhutdinov, T.

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Solís, Á.

Tam, H.

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Vargas, W. E.

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Vuong, L.

Wagner, T.

Wu, J.

Wu, P.

Yang, Y.

Zhao, D.

Zhou, W.

Adv. Mater. (1)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Nature (1)

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
[Crossref]

Opt. Mater. Express (16)

S. Hattori and K. Ishii, “Magneto-chiral dichroism of aromatic π conjugated systems,” Opt. Mater. Express 4(11), 2423–2432 (2014).
[Crossref]

T. W. H. Oates, T. Shaykhutdinov, T. Wagner, A. Furchner, and K. Hinrichs, “Mid-infrared gyrotropy in split-ring resonators measured by Mueller matrix ellipsometry,” Opt. Mater. Express 4(12), 2646–2655 (2014).

F. Egidi, I. Carnimeo, and C. Cappelli, “The optical rotatory dispersion of methyloxirane in aqueous solution: assessing the performance of density functional theory in combination with a fully polarizable QM/MM/PCM approach,” Opt. Mater. Express 5(1), 196–209 (2015).

S. Chen, P. Wu, and W. Lee, “Dielectric and phase behaviors of blue-phase liquid crystals,” Opt. Mater. Express 4(11), 2392–2400 (2014).
[Crossref]

A. Chadha, D. Zhao, and W. Zhou, “Comparative study of metallic and dielectric helix photonic metamaterial,” Opt. Mater. Express 4(12), 2460–2467 (2014).
[Crossref]

K. Lee, J. Wu, and K. Kim, “Defect modes in a one-dimensional photonic crystal with a chiral defect layer,” Opt. Mater. Express 4(12), 2542–2550 (2014).
[Crossref]

S. Kaya, “Circular dichroism from windmill-shaped planar structures operating in mid-infrared regime,” Opt. Mater. Express 4(11), 2332–2339 (2014).
[Crossref]

A. Bruyère, E. Benichou, L. Guy, A. Bensalah-Ledoux, S. Guy, and P.-F. Brevet, “Reversibility of the supramolecular chirality of bridged binaphtol derivatives at the air-water interface,” Opt. Mater. Express 4(12), 2516–2524 (2014).
[Crossref]

N. Potravkin, E. Cherepetskaya, I. Perezhogin, and V. Makarov, “Ultrashort elliptically polarized laser pulse interaction with helical photonic metamaterial,” Opt. Mater. Express 4(10), 2090–2101 (2014).
[Crossref]

G. Lin, T. Chen, Y. Lin, J. Wu, and Y. Yang, “Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields,” Opt. Mater. Express 4(12), 2468–2477 (2014).
[Crossref]

M. J. Huttunen, M. Partanen, G. Bautista, S.-W. Chu, and M. Kauranen, “Nonlinear optical activity effects in complex anisotropic three-dimensional media,” Opt. Mater. Express 5 (1), 11–21 (2015).

A. Mendoza-Galván, E. Muñoz-Pineda, K. Järrendahl, and H. Arwin, “Evidence for a dispersion relation of optical modes in the cuticle of the scarab beetle Cotinis mutabilis,” Opt. Mater. Express 4(12), 2484–2496 (2014).
[Crossref]

R. Mathevet and G. Rikken, “Magnetic circular dichroism as a local probe of the polarization of a focused Gaussian beam,” Opt. Mater. Express 4, 2574–2585 (2014).

M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, C. Barboza-Aguilar, Á. Solís, L. Arce-Marenco, I. García-Aguilar, A. Hernández, and W. E. Vargas, “Qualitative correlation between structural chirality through the cuticle of Chrysina aurigans scarabs and left-handed circular polarization of the reflected light,” Opt. Mater. Express 4(12), 2632–2645 (2014).

S. Ching, G. Li, H. Tam, D. Goh, J. Goh, and K. Cheah, “Chirality in Rhomborhina Gigantea beetle,” Opt. Mater. Express 4(11), 2340–2345 (2014).
[Crossref]

M. Moocarme, B. Kusin, and L. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 2355–2367 (2014).
[Crossref]

Other (3)

P. G. de Gennes, J. Prost, The Principle of Liquid Crystals (Oxford, 1993).

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 1982).

T. Verbiest, K. Clays, and V. Rodriguez, Nonlinear Optical Characterization Techniques: An Introduction (CRC press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics