Abstract

A ferromagnetic garnet, used as a magneto-optical (MO) material in magneto-photonic and magneto-plasmonic structures, is characterized. We present a general procedure to determine optical and magneto-optical functions of the magneto-optic garnet by using Mueller matrix ellipsometry. In the first step, the optical functions (the refractive index spectra) of the (CaMgZr)-doped gallium-gadolinium garnet (sGGG) substrate and the Bi-substituted gadolinium iron garnet Gd1.24Pr0.48Bi1.01Lu0.27Fe4.38Al0.6O12 (Bi:GIG) are obtained in the spectral range from 0.73 eV to 6.42 eV (wavelength range 193 nm – 1.7 μm). Subsequently, the spectra of the magneto-optical tensor components are obtained by applying an external in-plane magnetic field in longitudinal and transverse geometry. The obtained functions are then used to fit the Mueller matrix spectra of a magneto-plasmonic structure with a gold grating on the magneto-optic garnet layer. This structure has recently been demonstrated to have strongly enhanced transverse magneto-optic Kerr response at visible and near-infrared frequencies. By taking possible fabrication imperfections (surface roughness, residual photo-resist layer, thickness deviation) into account, the measured strongly enhanced MO response fits very well to the numerical model predicting these exaltations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetoplasmonic nanograting geometry enables optical nonreciprocity sign control

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben Youssef, K. Postava, J. Pištora, and B. Dagens
Opt. Express 26(24) 31554-31566 (2018)

Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora
Opt. Express 21(19) 21741-21755 (2013)

Magnetooptic ellipsometry in multilayers at arbitrary magnetization

Š. Višňovský, R. Lopušník, M. Bauer, J. Bok, J. Fassbender, and B. Hillebrands
Opt. Express 9(3) 121-135 (2001)

References

  • View by:
  • |
  • |
  • |

  1. P. Hansen and J.-P. Krumme, “Magnetic and magneto-optical properties of garnet films,” Thin Solid Films114, 69–107 (1984). Special Issue on Magnetic Garnet Films.
    [Crossref]
  2. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
    [Crossref] [PubMed]
  3. W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
    [Crossref]
  4. H. Yokoi, T. Mizumoto, N. S. N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
    [Crossref]
  5. Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
    [Crossref]
  6. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740 (2011).
    [Crossref] [PubMed]
  7. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
    [Crossref]
  8. T. Izuhara, J. Fujita, M. Levy, and R. M. Osgood, “Integration of magnetooptical waveguides onto a III–V semiconductor surface,” IEEE Phot. Technol. Lett. 14, 167–169 (2002).
    [Crossref]
  9. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
    [Crossref]
  10. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Phot.6 (2012).
    [Crossref]
  11. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
    [Crossref] [PubMed]
  12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
    [Crossref]
  13. L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Anomalous switching of giant magnetoplasmonic transverse kerr effect,” J. Magn. Soc. Jpn. 26, 78–81 (2012).
    [Crossref]
  14. L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
    [Crossref]
  15. V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
    [Crossref] [PubMed]
  16. I. A. Akimov, V. I. Belotelov, A. V. Scherbakov, and M. Pohl, “Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices,” J. Opt. Soc. Am. B 29, A103–A118 (2012).
    [Crossref]
  17. M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
    [Crossref]
  18. L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
    [Crossref]
  19. L. Li, “Reformulation of the Fourier modal method for surface–relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
    [Crossref]
  20. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, vol. 111 of “Springer Tracts in Modern Physics” (Springer-Verlag, 1988).
  21. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
    [Crossref]
  22. E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, A. De Martino, and B. Drévillon, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis,” in “Ellipsometry at the nanoscale,”, Springer, ed. (Springer, 2013), Engineering, p. 31.
    [Crossref]
  23. J. Ben Youssef, A. Thiaville, O. Navarro, J. M. Desvignes, and H. Le Gall, “Material considerations for vertical Bloch lines direct observation and dynamical study,” IEEE Trans. Magn. 27, 5505–5507 (1991).
    [Crossref]
  24. V. Kravtchenko, J. Desvignes, H. L. Gall, and J. Cerceau, “Growth and magnetooptical properties of thin garnets films in the system (Pr Gd Yb)3−xBix(Fe Al)5O12,” Mater. Res. Bull. 14, 559–565 (1979).
    [Crossref]
  25. J. M. Decitre, M. Lemistre, J. B. Youssef, F. Lepoutre, D. Placko, and P. Joubert, “Magneto-optical imaging method and device,” (2007). US patent No. 7271900.
  26. B. Ferrand, M. Armand, H. Moriceau, J. Daval, and J. Gay, “Growth of high figure of merit magnetic garnet films for magneto-optical applications,” Mater. Res. Bull. 21, 633–638 (1986).
    [Crossref]
  27. G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
    [Crossref]
  28. M. Foldyna, K. Postava, J. Bouchala, J. Pistora, and T. Yamaguchi, “Model dielectric functional of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2004).
    [Crossref]
  29. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
    [Crossref]
  30. D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
    [Crossref]
  31. P. J. Roussel, J. Vanhellemont, and H. E. Maes, “Numerical aspects of the implementation of the effective-medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).
    [Crossref]
  32. K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
    [Crossref]
  33. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [Crossref]
  34. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [Crossref]
  35. G. E. Jellison and F. A. Modine, “Parameterization of the functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
    [Crossref]
  36. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).
  37. T. Goto, M. C. Onbaşli, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20, 28507–28517 (2012).
    [Crossref] [PubMed]
  38. P. Hansen, K. Witter, and W. Tolksdorf, “Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films,” Phys. Rev. B 27, 6608–6625 (1983).
    [Crossref]
  39. S. Wittekoek, T. J. A. Popma, J. Robertson, and P. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV,” Phys. Rev. B 12, 2777–2788 (1975).
    [Crossref]
  40. T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
    [Crossref]
  41. A. H. Eschenfelder, “Magnetic bubble technology” (Springer-Verlag, 1980).
  42. Š. Višňovský, “Optics in magnetic multilayers and nanostructures,” (CRC, 2006).
  43. G. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. on Mag. 12, 292–311 (1976).
    [Crossref]
  44. G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and faraday rotation spectra of Bi3Fe5O12,” Phys. Rev. B 12, 2562–2571 (1975).
    [Crossref]
  45. M. Foldyna and A. D. Martino, “Characterization of grating structures by Mueller polarimetry in presence of strong depolarization due to finite spot size,” Opt. Commun. 282, 735–741 (2009).
    [Crossref]
  46. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  47. M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2 – 3 μm,” Opt. Commun. 188, 129–139 (2001).
    [Crossref]

2014 (1)

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

2013 (2)

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

2012 (5)

I. A. Akimov, V. I. Belotelov, A. V. Scherbakov, and M. Pohl, “Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices,” J. Opt. Soc. Am. B 29, A103–A118 (2012).
[Crossref]

T. Goto, M. C. Onbaşli, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20, 28507–28517 (2012).
[Crossref] [PubMed]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Anomalous switching of giant magnetoplasmonic transverse kerr effect,” J. Magn. Soc. Jpn. 26, 78–81 (2012).
[Crossref]

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

2011 (2)

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

M. Foldyna and A. D. Martino, “Characterization of grating structures by Mueller polarimetry in presence of strong depolarization due to finite spot size,” Opt. Commun. 282, 735–741 (2009).
[Crossref]

2008 (1)

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

2007 (1)

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

2004 (2)

M. Foldyna, K. Postava, J. Bouchala, J. Pistora, and T. Yamaguchi, “Model dielectric functional of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2004).
[Crossref]

T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
[Crossref]

2002 (2)

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

T. Izuhara, J. Fujita, M. Levy, and R. M. Osgood, “Integration of magnetooptical waveguides onto a III–V semiconductor surface,” IEEE Phot. Technol. Lett. 14, 167–169 (2002).
[Crossref]

2001 (1)

M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2 – 3 μm,” Opt. Commun. 188, 129–139 (2001).
[Crossref]

2000 (4)

H. Yokoi, T. Mizumoto, N. S. N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
[Crossref]

1998 (1)

L. Li, “Reformulation of the Fourier modal method for surface–relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[Crossref]

1996 (3)

1993 (1)

P. J. Roussel, J. Vanhellemont, and H. E. Maes, “Numerical aspects of the implementation of the effective-medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).
[Crossref]

1991 (1)

J. Ben Youssef, A. Thiaville, O. Navarro, J. M. Desvignes, and H. Le Gall, “Material considerations for vertical Bloch lines direct observation and dynamical study,” IEEE Trans. Magn. 27, 5505–5507 (1991).
[Crossref]

1986 (1)

B. Ferrand, M. Armand, H. Moriceau, J. Daval, and J. Gay, “Growth of high figure of merit magnetic garnet films for magneto-optical applications,” Mater. Res. Bull. 21, 633–638 (1986).
[Crossref]

1983 (1)

P. Hansen, K. Witter, and W. Tolksdorf, “Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films,” Phys. Rev. B 27, 6608–6625 (1983).
[Crossref]

1982 (1)

D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[Crossref]

1979 (1)

V. Kravtchenko, J. Desvignes, H. L. Gall, and J. Cerceau, “Growth and magnetooptical properties of thin garnets films in the system (Pr Gd Yb)3−xBix(Fe Al)5O12,” Mater. Res. Bull. 14, 559–565 (1979).
[Crossref]

1976 (1)

G. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. on Mag. 12, 292–311 (1976).
[Crossref]

1975 (2)

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and faraday rotation spectra of Bi3Fe5O12,” Phys. Rev. B 12, 2562–2571 (1975).
[Crossref]

S. Wittekoek, T. J. A. Popma, J. Robertson, and P. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV,” Phys. Rev. B 12, 2777–2788 (1975).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1968 (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Akimov, I.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Akimov, I. A.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

I. A. Akimov, V. I. Belotelov, A. V. Scherbakov, and M. Pohl, “Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices,” J. Opt. Soc. Am. B 29, A103–A118 (2012).
[Crossref]

Aoyama, M.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
[Crossref]

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Armand, M.

B. Ferrand, M. Armand, H. Moriceau, J. Daval, and J. Gay, “Growth of high figure of merit magnetic garnet films for magneto-optical applications,” Mater. Res. Bull. 21, 633–638 (1986).
[Crossref]

Aspnes, D. E.

D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[Crossref]

Bayer, M.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Belotelov, V.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Belotelov, V. I.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

I. A. Akimov, V. I. Belotelov, A. V. Scherbakov, and M. Pohl, “Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices,” J. Opt. Soc. Am. B 29, A103–A118 (2012).
[Crossref]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

Ben Youssef, J.

J. Ben Youssef, A. Thiaville, O. Navarro, J. M. Desvignes, and H. Le Gall, “Material considerations for vertical Bloch lines direct observation and dynamical study,” IEEE Trans. Magn. 27, 5505–5507 (1991).
[Crossref]

Ben-Youssef, J.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

Berre, M. L.

T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
[Crossref]

Blanc-Mignon, M.-F.

T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
[Crossref]

Bongers, P.

S. Wittekoek, T. J. A. Popma, J. Robertson, and P. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV,” Phys. Rev. B 12, 2777–2788 (1975).
[Crossref]

Bouchala, J.

M. Foldyna, K. Postava, J. Bouchala, J. Pistora, and T. Yamaguchi, “Model dielectric functional of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2004).
[Crossref]

Boudiar, T.

T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
[Crossref]

Bowers, J. E.

Bykov, D. A.

Caughman, J. B.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Cerceau, J.

V. Kravtchenko, J. Desvignes, H. L. Gall, and J. Cerceau, “Growth and magnetooptical properties of thin garnets films in the system (Pr Gd Yb)3−xBix(Fe Al)5O12,” Mater. Res. Bull. 14, 559–565 (1979).
[Crossref]

Chin, J. Y.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Collins, R. W.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Dagens, B.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Anomalous switching of giant magnetoplasmonic transverse kerr effect,” J. Magn. Soc. Jpn. 26, 78–81 (2012).
[Crossref]

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
[Crossref] [PubMed]

Daval, J.

B. Ferrand, M. Armand, H. Moriceau, J. Daval, and J. Gay, “Growth of high figure of merit magnetic garnet films for magneto-optical applications,” Mater. Res. Bull. 21, 633–638 (1986).
[Crossref]

De Martino, A.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, A. De Martino, and B. Drévillon, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis,” in “Ellipsometry at the nanoscale,”, Springer, ed. (Springer, 2013), Engineering, p. 31.
[Crossref]

Decitre, J. M.

J. M. Decitre, M. Lemistre, J. B. Youssef, F. Lepoutre, D. Placko, and P. Joubert, “Magneto-optical imaging method and device,” (2007). US patent No. 7271900.

Deng, X.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Desvignes, J.

V. Kravtchenko, J. Desvignes, H. L. Gall, and J. Cerceau, “Growth and magnetooptical properties of thin garnets films in the system (Pr Gd Yb)3−xBix(Fe Al)5O12,” Mater. Res. Bull. 14, 559–565 (1979).
[Crossref]

Desvignes, J. M.

J. Ben Youssef, A. Thiaville, O. Navarro, J. M. Desvignes, and H. Le Gall, “Material considerations for vertical Bloch lines direct observation and dynamical study,” IEEE Trans. Magn. 27, 5505–5507 (1991).
[Crossref]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
[Crossref]

Doskolovich, L. L.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

Dötsch, H.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Dregely, D.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Drévillon, B.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, A. De Martino, and B. Drévillon, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis,” in “Ellipsometry at the nanoscale,”, Springer, ed. (Springer, 2013), Engineering, p. 31.
[Crossref]

Eres, G.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Eschenfelder, A. H.

A. H. Eschenfelder, “Magnetic bubble technology” (Springer-Verlag, 1980).

Ferlauto, A. S.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Ferrand, B.

B. Ferrand, M. Armand, H. Moriceau, J. Daval, and J. Gay, “Growth of high figure of merit magnetic garnet films for magneto-optical applications,” Mater. Res. Bull. 21, 633–638 (1986).
[Crossref]

Ferreira, G. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Foldyna, M.

M. Foldyna and A. D. Martino, “Characterization of grating structures by Mueller polarimetry in presence of strong depolarization due to finite spot size,” Opt. Commun. 282, 735–741 (2009).
[Crossref]

M. Foldyna, K. Postava, J. Bouchala, J. Pistora, and T. Yamaguchi, “Model dielectric functional of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2004).
[Crossref]

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, A. De Martino, and B. Drévillon, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis,” in “Ellipsometry at the nanoscale,”, Springer, ed. (Springer, 2013), Engineering, p. 31.
[Crossref]

Fujita, J.

T. Izuhara, J. Fujita, M. Levy, and R. M. Osgood, “Integration of magnetooptical waveguides onto a III–V semiconductor surface,” IEEE Phot. Technol. Lett. 14, 167–169 (2002).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Futakuchi, N. S. N.

Gall, H. L.

V. Kravtchenko, J. Desvignes, H. L. Gall, and J. Cerceau, “Growth and magnetooptical properties of thin garnets films in the system (Pr Gd Yb)3−xBix(Fe Al)5O12,” Mater. Res. Bull. 14, 559–565 (1979).
[Crossref]

Ganguly, G.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Garcia-Caurel, E.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, A. De Martino, and B. Drévillon, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis,” in “Ellipsometry at the nanoscale,”, Springer, ed. (Springer, 2013), Engineering, p. 31.
[Crossref]

Gay, J.

B. Ferrand, M. Armand, H. Moriceau, J. Daval, and J. Gay, “Growth of high figure of merit magnetic garnet films for magneto-optical applications,” Mater. Res. Bull. 21, 633–638 (1986).
[Crossref]

Geohegan, D. B.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Giessen, H.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Gogol, P.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

Gopal, A.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Gopal, A. V.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

Goto, T.

Gralak, B.

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
[Crossref] [PubMed]

Guenneau, S.

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

Halagacka, L.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Anomalous switching of giant magnetoplasmonic transverse kerr effect,” J. Magn. Soc. Jpn. 26, 78–81 (2012).
[Crossref]

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Hansen, P.

P. Hansen, K. Witter, and W. Tolksdorf, “Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films,” Phys. Rev. B 27, 6608–6625 (1983).
[Crossref]

P. Hansen and J.-P. Krumme, “Magnetic and magneto-optical properties of garnet films,” Thin Solid Films114, 69–107 (1984). Special Issue on Magnetic Garnet Films.
[Crossref]

Hsieh, I.-W.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
[Crossref]

Igasaki, Y.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
[Crossref]

Ino, C.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
[Crossref]

Izuhara, T.

T. Izuhara, J. Fujita, M. Levy, and R. M. Osgood, “Integration of magnetooptical waveguides onto a III–V semiconductor surface,” IEEE Phot. Technol. Lett. 14, 167–169 (2002).
[Crossref]

Jellison, G. E.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

G. E. Jellison and F. A. Modine, “Parameterization of the functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Joisten, H.

T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
[Crossref]

Joubert, P.

J. M. Decitre, M. Lemistre, J. B. Youssef, F. Lepoutre, D. Placko, and P. Joubert, “Magneto-optical imaging method and device,” (2007). US patent No. 7271900.

Kalish, A. N.

Kasture, S.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Khashan, M.

M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2 – 3 μm,” Opt. Commun. 188, 129–139 (2001).
[Crossref]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
[Crossref]

Kotov, V.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Kravtchenko, V.

V. Kravtchenko, J. Desvignes, H. L. Gall, and J. Cerceau, “Growth and magnetooptical properties of thin garnets films in the system (Pr Gd Yb)3−xBix(Fe Al)5O12,” Mater. Res. Bull. 14, 559–565 (1979).
[Crossref]

Kreilkamp, L. E.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Kromer, H.

Krumme, J.-P.

P. Hansen and J.-P. Krumme, “Magnetic and magneto-optical properties of garnet films,” Thin Solid Films114, 69–107 (1984). Special Issue on Magnetic Garnet Films.
[Crossref]

Lacklison, D. E.

G. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. on Mag. 12, 292–311 (1976).
[Crossref]

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and faraday rotation spectra of Bi3Fe5O12,” Phys. Rev. B 12, 2562–2571 (1975).
[Crossref]

Le Gall, H.

J. Ben Youssef, A. Thiaville, O. Navarro, J. M. Desvignes, and H. Le Gall, “Material considerations for vertical Bloch lines direct observation and dynamical study,” IEEE Trans. Magn. 27, 5505–5507 (1991).
[Crossref]

Lemistre, M.

J. M. Decitre, M. Lemistre, J. B. Youssef, F. Lepoutre, D. Placko, and P. Joubert, “Magneto-optical imaging method and device,” (2007). US patent No. 7271900.

Lepoutre, F.

J. M. Decitre, M. Lemistre, J. B. Youssef, F. Lepoutre, D. Placko, and P. Joubert, “Magneto-optical imaging method and device,” (2007). US patent No. 7271900.

Levy, M.

T. Izuhara, J. Fujita, M. Levy, and R. M. Osgood, “Integration of magnetooptical waveguides onto a III–V semiconductor surface,” IEEE Phot. Technol. Lett. 14, 167–169 (2002).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Li, L.

Lowndes, D. H.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Maes, H. E.

P. J. Roussel, J. Vanhellemont, and H. E. Maes, “Numerical aspects of the implementation of the effective-medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).
[Crossref]

Magdenko, L.

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
[Crossref] [PubMed]

Martino, A. D.

M. Foldyna and A. D. Martino, “Characterization of grating structures by Mueller polarimetry in presence of strong depolarization due to finite spot size,” Opt. Commun. 282, 735–741 (2009).
[Crossref]

Merkulov, V. I.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Mizumoto, T.

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parameterization of the functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

Moriceau, H.

B. Ferrand, M. Armand, H. Moriceau, J. Daval, and J. Gay, “Growth of high figure of merit magnetic garnet films for magneto-optical applications,” Mater. Res. Bull. 21, 633–638 (1986).
[Crossref]

Nakano, Y.

Nassif, A.

M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2 – 3 μm,” Opt. Commun. 188, 129–139 (2001).
[Crossref]

Navarro, O.

J. Ben Youssef, A. Thiaville, O. Navarro, J. M. Desvignes, and H. Le Gall, “Material considerations for vertical Bloch lines direct observation and dynamical study,” IEEE Trans. Magn. 27, 5505–5507 (1991).
[Crossref]

Neutzner, S.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Onbasli, M. C.

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

T. Izuhara, J. Fujita, M. Levy, and R. M. Osgood, “Integration of magnetooptical waveguides onto a III–V semiconductor surface,” IEEE Phot. Technol. Lett. 14, 167–169 (2002).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Ossikovski, R.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, A. De Martino, and B. Drévillon, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis,” in “Ellipsometry at the nanoscale,”, Springer, ed. (Springer, 2013), Engineering, p. 31.
[Crossref]

Page, J. L.

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and faraday rotation spectra of Bi3Fe5O12,” Phys. Rev. B 12, 2562–2571 (1975).
[Crossref]

Payet-Gervy, B.

T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
[Crossref]

Pearce, J. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Pierangelo, A.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, A. De Martino, and B. Drévillon, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis,” in “Ellipsometry at the nanoscale,”, Springer, ed. (Springer, 2013), Engineering, p. 31.
[Crossref]

Pintus, P.

Pistora, J.

M. Foldyna, K. Postava, J. Bouchala, J. Pistora, and T. Yamaguchi, “Model dielectric functional of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2004).
[Crossref]

Pištora, J.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Anomalous switching of giant magnetoplasmonic transverse kerr effect,” J. Magn. Soc. Jpn. 26, 78–81 (2012).
[Crossref]

Placko, D.

J. M. Decitre, M. Lemistre, J. B. Youssef, F. Lepoutre, D. Placko, and P. Joubert, “Magneto-optical imaging method and device,” (2007). US patent No. 7271900.

Pohl, M.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

I. A. Akimov, V. I. Belotelov, A. V. Scherbakov, and M. Pohl, “Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices,” J. Opt. Soc. Am. B 29, A103–A118 (2012).
[Crossref]

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Popma, T. J. A.

S. Wittekoek, T. J. A. Popma, J. Robertson, and P. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV,” Phys. Rev. B 12, 2777–2788 (1975).
[Crossref]

Postava, K.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Anomalous switching of giant magnetoplasmonic transverse kerr effect,” J. Magn. Soc. Jpn. 26, 78–81 (2012).
[Crossref]

M. Foldyna, K. Postava, J. Bouchala, J. Pistora, and T. Yamaguchi, “Model dielectric functional of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2004).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
[Crossref]

Puretzky, A. A.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Raether, H.

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, vol. 111 of “Springer Tracts in Modern Physics” (Springer-Verlag, 1988).

Ralph, H. I.

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and faraday rotation spectra of Bi3Fe5O12,” Phys. Rev. B 12, 2562–2571 (1975).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Robertson, J.

S. Wittekoek, T. J. A. Popma, J. Robertson, and P. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV,” Phys. Rev. B 12, 2777–2788 (1975).
[Crossref]

Romero-Vivas, J.

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
[Crossref] [PubMed]

Ross, C. A.

T. Goto, M. C. Onbaşli, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20, 28507–28517 (2012).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
[Crossref]

Rousseau, J.-J.

T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
[Crossref]

Roussel, P. J.

P. J. Roussel, J. Vanhellemont, and H. E. Maes, “Numerical aspects of the implementation of the effective-medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).
[Crossref]

Scherbakov, A. V.

Scott, G.

G. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. on Mag. 12, 292–311 (1976).
[Crossref]

Scott, G. B.

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and faraday rotation spectra of Bi3Fe5O12,” Phys. Rev. B 12, 2562–2571 (1975).
[Crossref]

Shoji, Y.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Smigaj, W.

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
[Crossref] [PubMed]

Stritzker, B.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Sueki, H.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
[Crossref]

Temnov, V.

V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Phot.6 (2012).
[Crossref]

Thiaville, A.

J. Ben Youssef, A. Thiaville, O. Navarro, J. M. Desvignes, and H. Le Gall, “Material considerations for vertical Bloch lines direct observation and dynamical study,” IEEE Trans. Magn. 27, 5505–5507 (1991).
[Crossref]

Tien, M. C.

Tolksdorf, W.

P. Hansen, K. Witter, and W. Tolksdorf, “Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films,” Phys. Rev. B 27, 6608–6625 (1983).
[Crossref]

Vanhellemont, J.

P. J. Roussel, J. Vanhellemont, and H. E. Maes, “Numerical aspects of the implementation of the effective-medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).
[Crossref]

Vanwolleghem, M.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Anomalous switching of giant magnetoplasmonic transverse kerr effect,” J. Magn. Soc. Jpn. 26, 78–81 (2012).
[Crossref]

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
[Crossref] [PubMed]

Vaurette, F.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

Vengurlekar, A.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Vengurlekar, A. S.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

Višnovský, Š.

Š. Višňovský, “Optics in magnetic multilayers and nanostructures,” (CRC, 2006).

Wehlus, T.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Wilkens, L.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Wittekoek, S.

S. Wittekoek, T. J. A. Popma, J. Robertson, and P. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV,” Phys. Rev. B 12, 2777–2788 (1975).
[Crossref]

Witter, K.

P. Hansen, K. Witter, and W. Tolksdorf, “Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films,” Phys. Rev. B 27, 6608–6625 (1983).
[Crossref]

Wronski, C. R.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Yakovlev, D.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Yakovlev, D. R.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

Yam, N.

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

Yamaguchi, T.

M. Foldyna, K. Postava, J. Bouchala, J. Pistora, and T. Yamaguchi, “Model dielectric functional of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2004).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
[Crossref]

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

H. Yokoi, T. Mizumoto, N. S. N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[Crossref]

Youssef, J. B.

J. M. Decitre, M. Lemistre, J. B. Youssef, F. Lepoutre, D. Placko, and P. Joubert, “Magneto-optical imaging method and device,” (2007). US patent No. 7271900.

Zvezdin, A.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Zvezdin, A. K.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

Am. J. Phys. (1)

D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

G. E. Jellison and F. A. Modine, “Parameterization of the functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

IEEE Phot. Technol. Lett. (1)

T. Izuhara, J. Fujita, M. Levy, and R. M. Osgood, “Integration of magnetooptical waveguides onto a III–V semiconductor surface,” IEEE Phot. Technol. Lett. 14, 167–169 (2002).
[Crossref]

IEEE Trans. Magn. (1)

J. Ben Youssef, A. Thiaville, O. Navarro, J. M. Desvignes, and H. Le Gall, “Material considerations for vertical Bloch lines direct observation and dynamical study,” IEEE Trans. Magn. 27, 5505–5507 (1991).
[Crossref]

IEEE Trans. on Mag. (1)

G. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. on Mag. 12, 292–311 (1976).
[Crossref]

J. Appl. Phys. (2)

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, C. Ino, and Y. Igasaki, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824 (2000).
[Crossref]

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

J. Magn. Magn. Mater. (1)

T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. L. Berre, and H. Joisten, “Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering,” J. Magn. Magn. Mater. 284, 77–85 (2004).
[Crossref]

J. Magn. Soc. Jpn. (1)

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Anomalous switching of giant magnetoplasmonic transverse kerr effect,” J. Magn. Soc. Jpn. 26, 78–81 (2012).
[Crossref]

J. Mod. Opt. (1)

L. Li, “Reformulation of the Fourier modal method for surface–relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Mater. Res. Bull. (2)

V. Kravtchenko, J. Desvignes, H. L. Gall, and J. Cerceau, “Growth and magnetooptical properties of thin garnets films in the system (Pr Gd Yb)3−xBix(Fe Al)5O12,” Mater. Res. Bull. 14, 559–565 (1979).
[Crossref]

B. Ferrand, M. Armand, H. Moriceau, J. Daval, and J. Gay, “Growth of high figure of merit magnetic garnet films for magneto-optical applications,” Mater. Res. Bull. 21, 633–638 (1986).
[Crossref]

Nat. Nanotechnol. (1)

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Opt. Commun. (2)

M. Foldyna and A. D. Martino, “Characterization of grating structures by Mueller polarimetry in presence of strong depolarization due to finite spot size,” Opt. Commun. 282, 735–741 (2009).
[Crossref]

M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2 – 3 μm,” Opt. Commun. 188, 129–139 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phot. Nanostruct. - Fundam. Appl. (1)

W. Śmigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, and M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity,” Phot. Nanostruct. - Fundam. Appl. 10, 83–101 (2012).
[Crossref]

Phys. Rev. B (5)

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012).
[Crossref]

P. Hansen, K. Witter, and W. Tolksdorf, “Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films,” Phys. Rev. B 27, 6608–6625 (1983).
[Crossref]

S. Wittekoek, T. J. A. Popma, J. Robertson, and P. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV,” Phys. Rev. B 12, 2777–2788 (1975).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and faraday rotation spectra of Bi3Fe5O12,” Phys. Rev. B 12, 2562–2571 (1975).
[Crossref]

Phys. Rev. Lett. (2)

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[Crossref]

Phys. Rev. X (1)

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Proc. SPIE (2)

M. Foldyna, K. Postava, J. Bouchala, J. Pistora, and T. Yamaguchi, “Model dielectric functional of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2004).
[Crossref]

L. Halagačka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magneto-plasmonic nanostructures,” Proc. SPIE 8988, 89880E(2014).
[Crossref]

Thin Solid Films (2)

P. J. Roussel, J. Vanhellemont, and H. E. Maes, “Numerical aspects of the implementation of the effective-medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).
[Crossref]

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Other (8)

J. M. Decitre, M. Lemistre, J. B. Youssef, F. Lepoutre, D. Placko, and P. Joubert, “Magneto-optical imaging method and device,” (2007). US patent No. 7271900.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, A. De Martino, and B. Drévillon, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis,” in “Ellipsometry at the nanoscale,”, Springer, ed. (Springer, 2013), Engineering, p. 31.
[Crossref]

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, vol. 111 of “Springer Tracts in Modern Physics” (Springer-Verlag, 1988).

P. Hansen and J.-P. Krumme, “Magnetic and magneto-optical properties of garnet films,” Thin Solid Films114, 69–107 (1984). Special Issue on Magnetic Garnet Films.
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photonics758 (2011).
[Crossref]

V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Phot.6 (2012).
[Crossref]

A. H. Eschenfelder, “Magnetic bubble technology” (Springer-Verlag, 1980).

Š. Višňovský, “Optics in magnetic multilayers and nanostructures,” (CRC, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Dual-rotating compensator ellipsometer configuration and orientation of external in-plane magnetization components are shown schematically.
Fig. 2
Fig. 2 Measured spectra (dots) of ellipsometric angles ψ (top left), Δ (bottom left) and transmittance (right subplot) are compared with the model (lines).
Fig. 3
Fig. 3 Optical functions of sGGG substrate. The real part ℜ{ε11} and the imaginary part ℑ{ε11} of the function is plotted using solid and dashed lines, respectively.
Fig. 4
Fig. 4 Measured ellipsometric angles of Bi:GIG layer on sGGG substrate (dots) are compared with model (lines).Upper and lower subplot corresponds to ψ and Δ respectively.
Fig. 5
Fig. 5 Optical function of Bi:GIG layer. The real part ℜ{ε11} and the imaginary part ℑ{ε11} of the function is plotted using solid and dashed lines, respectively.
Fig. 6
Fig. 6 Hysteresis loop of Faraday effect measured in transmission through the sample for in-plane external magnetic field and the angle of incidence of 45°.
Fig. 7
Fig. 7 Measured differences of the Mueller matrix components obtained from MO measurements in transverse MO configuration (blue dots) are compared with the model (red lines). Reduced number of spectral points is shown in order to distinct the measured data from model.
Fig. 8
Fig. 8 Measured differences of the Mueller matrix components obtained from MO measurements in longitudinal MO configuration (blue dots) are compared with the model (red lines). Reduced number of spectral points is shown in order to distinct the measured data from model.
Fig. 9
Fig. 9 Fitted spectral dependence of off-diagonal tensor component from ellipsometric measurement of Bi:GIG in transverse and longitudinal MO configuration.
Fig. 10
Fig. 10 Cross-section of the grating structure is shown schematically. By the fitting procedure geometrical parameters t1t4, Λ, and r were estimated. Surface roughness gold/void and mixture of gold/PMMA were calculated as the BEMA layer with volume fraction f = 0.5.
Fig. 11
Fig. 11 Best fit of the Mueller matrix spectra measured on the plasmonic grating. Experimental data a(blue dots) are compared with numerical model (red lines). First subplot (top-left) shows good agreement between measured and calculated depolarization. A reduced number of spectral points is shown in order to distinct the measured data from model.
Fig. 12
Fig. 12 Numerical and experimental data are compared. Left subplot shows good agreement of a calculated relative reflectivity with a model. Right subplot shows agreement between measured and calculated MO effect δ R p / R s = R p / R s ( + M T sat ) R p / R s ( M T sat ).

Tables (3)

Tables Icon

Table 1 Parameters of model of sGGG substrate

Tables Icon

Table 2 Parameters of model of Bi:GIG layer on sGGG substrate, 0.74 – 2.5 eV.

Tables Icon

Table 3 Fitted parameters of the model shown on Fig. 10.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

k SP ( E ) = 2 π h c E ε Au ( E ) ε Bi : GIG ( E ) ε Au ( E ) + ε Bi : GIG ( E ) ,
k W ( E ) = ± k SP ( E ) + m 2 π Λ , with m ,
M = [ 1 N 0 0 N 1 0 0 0 0 C S 0 0 S C ] .
N = cos 2 ψ , C = sin 2 ψ sin Δ , S = sin 2 ψ cos Δ ,
r p p / r s s = tan ψ exp ( i Δ ) .
ε 2 ( E ) = { 1 E A E 0 C ( E E g ) 2 ( E 2 E 0 2 ) 2 + C 2 E 2 E E c A u E exp ( E E u ) 0 E E c ,
0 = ( 1 f ) ε ε eff ε + 2 ε eff + f 1 ε eff 1 + 2 ε eff ,
ε sGGG = ε TL + ε TLU + ε DHO ,
ε DHO ( E ) = A E 0 2 E 0 2 E 2 + i C E ,
M x diff . = M ( + M x sat . ) M ( M x sat . ) , x = T , L .
R p R s = M 11 + M 12 M 11 M 12 = 1 M 12 M 11 1 + M 12 M 11 = 1 + N 1 N
δ R p R s = R p R s ( + M T sat . ) R p R s ( M T sat . )

Metrics