Abstract

In this work, we report on the difference of mechanical stress in free standing and attached Porous silicon membranes. By performing Raman analysis, we demonstrate that the tensile stress accumulated during the etching process by the porous silicon layer is partially compensated by the presence of the substrate. We highlight this complex effect by experimentally showing the balancing effect of the substrate and the change in mechanical stress between top and bottom surfaces in free standing membranes. In addition, this Raman investigation allows us to separate the effects on the Raman lineshape due to the nanostructures from those related with the mechanical stress of macroscopic structures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Birefringent porous silicon membranes for optical sensing

Jesús Álvarez, Paolo Bettotti, Isaac Suárez, Neeraj Kumar, Daniel Hill, Vladimir Chirvony, Lorenzo Pavesi, and Juan Martínez-Pastor
Opt. Express 19(27) 26106-26116 (2011)

Tamm plasmon-polaritons in a metal coated porous silicon photonic crystal

Alexandre Juneau-Fecteau and Luc G. Fréchette
Opt. Mater. Express 8(9) 2774-2781 (2018)

Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes

Séverine Diziain, Reinhard Geiss, Michael Steinert, Carsten Schmidt, Wei-Kun Chang, Stefan Fasold, Daniel Füßel, Yen-Hung Chen, and Thomas Pertsch
Opt. Mater. Express 5(9) 2081-2089 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Kumar, E. Froner, R. Guider, M. Scarpa, and P. Bettotti, “Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors,” Analyst (Lond.) 139(6), 1345–1349 (2014).
    [Crossref] [PubMed]
  2. J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
    [Crossref]
  3. F. Haase, S. Kajari-Schröder, and R. Brendel, “High efficiency back-contact back-junction thin-film monocrystalline silicon solar cells from the porous silicon process,” J. Appl. Phys. 114(19), 194505 (2013).
    [Crossref]
  4. M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82(10), 1550–1552 (2003).
    [Crossref]
  5. P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
    [Crossref]
  6. Md. N. Islam and S. Kumar, “Influence of crystallite size distribution on the micro-Raman analysis of porous Si,” Appl. Phys. Lett. 78(6), 715–717 (2001).
    [Crossref]
  7. D. Papadimitriou, J. Bitsakis, J. M. Lopez-Villegas, J. Samitier, and J. R. Morante, “Depth dependence of stress and porosity in porous silicon: a micro-Raman study,” Thin Solid Films 349(1), 293–297 (1999).
    [Crossref]
  8. M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
    [Crossref]
  9. I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun. 58(10), 739–741 (1986).
    [Crossref]
  10. V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca i Cabarrocasb, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys. 90(7), 3276–3279 (2001).
    [Crossref]
  11. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
    [Crossref] [PubMed]
  12. D. Abidi, B. Jusserand, and J.-L. Fave, “Raman scattering studies of heavily doped microcrystalline porous silicon and porous silicon free-standing membranes,” Phys. Rev. B 82(7), 075210 (2010).
    [Crossref]
  13. H. Tanino, A. Kuprin, H. Deai, and N. Koshida, “Raman study of free-standing porous silicon,” Phys. Rev. B Condens. Matter 53(4), 1937–1947 (1996).
    [Crossref] [PubMed]
  14. Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48(11), 1119–1125 (2010).
    [Crossref]
  15. A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
    [Crossref] [PubMed]
  16. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
    [Crossref] [PubMed]
  17. N. Kumar, S. Gennaro, P. Sasikumar, G. D. Sorarù, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Appl. Phys., A Mater. Sci. Process. 116(1), 251–257 (2014).
    [Crossref]
  18. P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
    [Crossref]
  19. S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
    [Crossref]
  20. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
    [Crossref]
  21. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  22. N. Kumar, “Fabrication of n-type porous silicon membranes for sensing applications,” PhD Thesis, University of Trento, Trento, Italy, 2013, http://eprints-phd.biblio.unitn.it/1127/1/thesis.pdf
  23. I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
    [Crossref]
  24. http://www.mathworks.com/matlabcentral/fileexchange/24916-baseline-fit
  25. F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
  26. Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).
    [Crossref]

2014 (3)

N. Kumar, E. Froner, R. Guider, M. Scarpa, and P. Bettotti, “Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors,” Analyst (Lond.) 139(6), 1345–1349 (2014).
[Crossref] [PubMed]

N. Kumar, S. Gennaro, P. Sasikumar, G. D. Sorarù, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Appl. Phys., A Mater. Sci. Process. 116(1), 251–257 (2014).
[Crossref]

P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
[Crossref]

2013 (2)

F. Haase, S. Kajari-Schröder, and R. Brendel, “High efficiency back-contact back-junction thin-film monocrystalline silicon solar cells from the porous silicon process,” J. Appl. Phys. 114(19), 194505 (2013).
[Crossref]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
[Crossref]

2011 (2)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

2010 (3)

D. Abidi, B. Jusserand, and J.-L. Fave, “Raman scattering studies of heavily doped microcrystalline porous silicon and porous silicon free-standing membranes,” Phys. Rev. B 82(7), 075210 (2010).
[Crossref]

Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48(11), 1119–1125 (2010).
[Crossref]

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2003 (1)

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82(10), 1550–1552 (2003).
[Crossref]

2002 (1)

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

2001 (2)

Md. N. Islam and S. Kumar, “Influence of crystallite size distribution on the micro-Raman analysis of porous Si,” Appl. Phys. Lett. 78(6), 715–717 (2001).
[Crossref]

V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca i Cabarrocasb, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys. 90(7), 3276–3279 (2001).
[Crossref]

2000 (1)

S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
[Crossref]

1999 (1)

D. Papadimitriou, J. Bitsakis, J. M. Lopez-Villegas, J. Samitier, and J. R. Morante, “Depth dependence of stress and porosity in porous silicon: a micro-Raman study,” Thin Solid Films 349(1), 293–297 (1999).
[Crossref]

1996 (2)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[Crossref]

H. Tanino, A. Kuprin, H. Deai, and N. Koshida, “Raman study of free-standing porous silicon,” Phys. Rev. B Condens. Matter 53(4), 1937–1947 (1996).
[Crossref] [PubMed]

1994 (1)

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[Crossref]

1993 (1)

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
[Crossref] [PubMed]

1986 (1)

I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun. 58(10), 739–741 (1986).
[Crossref]

1982 (1)

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).
[Crossref]

1972 (1)

F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).

Abidi, D.

D. Abidi, B. Jusserand, and J.-L. Fave, “Raman scattering studies of heavily doped microcrystalline porous silicon and porous silicon free-standing membranes,” Phys. Rev. B 82(7), 075210 (2010).
[Crossref]

Agullo-Rueda, F.

S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
[Crossref]

Ao, X.

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

Avrutsky, I.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
[Crossref]

Ben-Hander, F.

S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
[Crossref]

Bettotti, P.

N. Kumar, S. Gennaro, P. Sasikumar, G. D. Sorarù, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Appl. Phys., A Mater. Sci. Process. 116(1), 251–257 (2014).
[Crossref]

N. Kumar, E. Froner, R. Guider, M. Scarpa, and P. Bettotti, “Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors,” Analyst (Lond.) 139(6), 1345–1349 (2014).
[Crossref] [PubMed]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82(10), 1550–1552 (2003).
[Crossref]

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Bitsakis, J.

D. Papadimitriou, J. Bitsakis, J. M. Lopez-Villegas, J. Samitier, and J. R. Morante, “Depth dependence of stress and porosity in porous silicon: a micro-Raman study,” Thin Solid Films 349(1), 293–297 (1999).
[Crossref]

Blasco, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Brendel, R.

F. Haase, S. Kajari-Schröder, and R. Brendel, “High efficiency back-contact back-junction thin-film monocrystalline silicon solar cells from the porous silicon process,” J. Appl. Phys. 114(19), 194505 (2013).
[Crossref]

Buchenauer, C. J.

F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).

Campbell, I. H.

I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun. 58(10), 739–741 (1986).
[Crossref]

Carbonaro, C. M.

P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
[Crossref]

Cardona, M.

F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).

Casula, R.

P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
[Crossref]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Cerdeira, F.

F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).

Cojocaru, A.

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

Corpino, R.

P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
[Crossref]

Dal Negro, L.

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

Daldosso, N.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

de Boor, J.

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

De Wolf, I.

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[Crossref]

Deai, H.

H. Tanino, A. Kuprin, H. Deai, and N. Koshida, “Raman study of free-standing porous silicon,” Phys. Rev. B Condens. Matter 53(4), 1937–1947 (1996).
[Crossref] [PubMed]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Fauchet, P. M.

I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun. 58(10), 739–741 (1986).
[Crossref]

Fave, J.-L.

D. Abidi, B. Jusserand, and J.-L. Fave, “Raman scattering studies of heavily doped microcrystalline porous silicon and porous silicon free-standing membranes,” Phys. Rev. B 82(7), 075210 (2010).
[Crossref]

Fedeli, J. M.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Foll, H.

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

Froner, E.

N. Kumar, E. Froner, R. Guider, M. Scarpa, and P. Bettotti, “Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors,” Analyst (Lond.) 139(6), 1345–1349 (2014).
[Crossref] [PubMed]

Fumagalli, F.

P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
[Crossref]

Futagi, T.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
[Crossref] [PubMed]

Gaburro, Z.

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82(10), 1550–1552 (2003).
[Crossref]

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

Galán, J. V.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Galli, M.

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

García-Rupérez, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Garrido, B.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Gautier, P.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Gennaro, S.

N. Kumar, S. Gennaro, P. Sasikumar, G. D. Sorarù, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Appl. Phys., A Mater. Sci. Process. 116(1), 251–257 (2014).
[Crossref]

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82(10), 1550–1552 (2003).
[Crossref]

Gibbs, H. M.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
[Crossref]

Gibson, R.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
[Crossref]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Guerrero-Lemus, R.

S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
[Crossref]

Guider, R.

N. Kumar, E. Froner, R. Guider, M. Scarpa, and P. Bettotti, “Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors,” Analyst (Lond.) 139(6), 1345–1349 (2014).
[Crossref] [PubMed]

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Gulleri, G.

P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
[Crossref]

Guo, J.

Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48(11), 1119–1125 (2010).
[Crossref]

Haase, F.

F. Haase, S. Kajari-Schröder, and R. Brendel, “High efficiency back-contact back-junction thin-film monocrystalline silicon solar cells from the porous silicon process,” J. Appl. Phys. 114(19), 194505 (2013).
[Crossref]

Hagen, D.

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

Hamma, S.

V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca i Cabarrocasb, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys. 90(7), 3276–3279 (2001).
[Crossref]

Hao, P.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[Crossref]

Hendrickson, J.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
[Crossref]

Hernández, S.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Hou, X.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[Crossref]

Huang, D.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[Crossref]

Iqbal, Z.

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).
[Crossref]

Islam, Md. N.

Md. N. Islam and S. Kumar, “Influence of crystallite size distribution on the micro-Raman analysis of porous Si,” Appl. Phys. Lett. 78(6), 715–717 (2001).
[Crossref]

Jordana, E.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Jusserand, B.

D. Abidi, B. Jusserand, and J.-L. Fave, “Raman scattering studies of heavily doped microcrystalline porous silicon and porous silicon free-standing membranes,” Phys. Rev. B 82(7), 075210 (2010).
[Crossref]

Kajari-Schröder, S.

F. Haase, S. Kajari-Schröder, and R. Brendel, “High efficiency back-contact back-junction thin-film monocrystalline silicon solar cells from the porous silicon process,” J. Appl. Phys. 114(19), 194505 (2013).
[Crossref]

Kanemitsu, Y.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
[Crossref] [PubMed]

Kang, Y.

Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48(11), 1119–1125 (2010).
[Crossref]

Khitrova, G.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
[Crossref]

Kim, D. S.

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

Koshida, N.

H. Tanino, A. Kuprin, H. Deai, and N. Koshida, “Raman study of free-standing porous silicon,” Phys. Rev. B Condens. Matter 53(4), 1937–1947 (1996).
[Crossref] [PubMed]

Kumar, N.

N. Kumar, E. Froner, R. Guider, M. Scarpa, and P. Bettotti, “Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors,” Analyst (Lond.) 139(6), 1345–1349 (2014).
[Crossref] [PubMed]

N. Kumar, S. Gennaro, P. Sasikumar, G. D. Sorarù, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Appl. Phys., A Mater. Sci. Process. 116(1), 251–257 (2014).
[Crossref]

Kumar, S.

Md. N. Islam and S. Kumar, “Influence of crystallite size distribution on the micro-Raman analysis of porous Si,” Appl. Phys. Lett. 78(6), 715–717 (2001).
[Crossref]

Kuprin, A.

H. Tanino, A. Kuprin, H. Deai, and N. Koshida, “Raman study of free-standing porous silicon,” Phys. Rev. B Condens. Matter 53(4), 1937–1947 (1996).
[Crossref] [PubMed]

Lebour, Y.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Li, Q.

Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48(11), 1119–1125 (2010).
[Crossref]

Lopez-Villegas, J. M.

D. Papadimitriou, J. Bitsakis, J. M. Lopez-Villegas, J. Samitier, and J. R. Morante, “Depth dependence of stress and porosity in porous silicon: a micro-Raman study,” Thin Solid Films 349(1), 293–297 (1999).
[Crossref]

Lui, A.

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Manotas, S.

S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
[Crossref]

Marabelli, F.

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

Martí, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Martínez, A.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Martinez-Duart, J. M.

S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
[Crossref]

Masumoto, Y.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
[Crossref] [PubMed]

Matsumoto, T.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
[Crossref] [PubMed]

Mimura, H.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
[Crossref] [PubMed]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Morante, J. R.

D. Papadimitriou, J. Bitsakis, J. M. Lopez-Villegas, J. Samitier, and J. R. Morante, “Depth dependence of stress and porosity in porous silicon: a micro-Raman study,” Thin Solid Films 349(1), 293–297 (1999).
[Crossref]

Moreno, J. D.

S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
[Crossref]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Oton, C. J.

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82(10), 1550–1552 (2003).
[Crossref]

Paillard, V.

V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca i Cabarrocasb, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys. 90(7), 3276–3279 (2001).
[Crossref]

Papadimitriou, D.

D. Papadimitriou, J. Bitsakis, J. M. Lopez-Villegas, J. Samitier, and J. R. Morante, “Depth dependence of stress and porosity in porous silicon: a micro-Raman study,” Thin Solid Films 349(1), 293–297 (1999).
[Crossref]

Patrini, M.

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82(10), 1550–1552 (2003).
[Crossref]

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Pollak, F. H.

F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Puech, P.

V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca i Cabarrocasb, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys. 90(7), 3276–3279 (2001).
[Crossref]

Qiu, W.

Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48(11), 1119–1125 (2010).
[Crossref]

Ricci, P. C.

P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
[Crossref]

Roca i Cabarrocasb, P.

V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca i Cabarrocasb, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys. 90(7), 3276–3279 (2001).
[Crossref]

Samitier, J.

D. Papadimitriou, J. Bitsakis, J. M. Lopez-Villegas, J. Samitier, and J. R. Morante, “Depth dependence of stress and porosity in porous silicon: a micro-Raman study,” Thin Solid Films 349(1), 293–297 (1999).
[Crossref]

Sanchis, P.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Sasikumar, P.

N. Kumar, S. Gennaro, P. Sasikumar, G. D. Sorarù, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Appl. Phys., A Mater. Sci. Process. 116(1), 251–257 (2014).
[Crossref]

Scarpa, M.

N. Kumar, E. Froner, R. Guider, M. Scarpa, and P. Bettotti, “Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors,” Analyst (Lond.) 139(6), 1345–1349 (2014).
[Crossref] [PubMed]

Schmidt, V.

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

Sears, J.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
[Crossref]

Sirvin, R.

V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca i Cabarrocasb, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys. 90(7), 3276–3279 (2001).
[Crossref]

Sorarù, G. D.

N. Kumar, S. Gennaro, P. Sasikumar, G. D. Sorarù, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Appl. Phys., A Mater. Sci. Process. 116(1), 251–257 (2014).
[Crossref]

Spano, R.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Tan, H.

Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48(11), 1119–1125 (2010).
[Crossref]

Tanino, H.

H. Tanino, A. Kuprin, H. Deai, and N. Koshida, “Raman study of free-standing porous silicon,” Phys. Rev. B Condens. Matter 53(4), 1937–1947 (1996).
[Crossref] [PubMed]

Uto, H.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
[Crossref] [PubMed]

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Veprek, S.

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).
[Crossref]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Wang, X.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[Crossref]

Yang, M.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[Crossref]

Zhang, F.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[Crossref]

Analyst (Lond.) (1)

N. Kumar, E. Froner, R. Guider, M. Scarpa, and P. Bettotti, “Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors,” Analyst (Lond.) 139(6), 1345–1349 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82(10), 1550–1552 (2003).
[Crossref]

Md. N. Islam and S. Kumar, “Influence of crystallite size distribution on the micro-Raman analysis of porous Si,” Appl. Phys. Lett. 78(6), 715–717 (2001).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

N. Kumar, S. Gennaro, P. Sasikumar, G. D. Sorarù, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Appl. Phys., A Mater. Sci. Process. 116(1), 251–257 (2014).
[Crossref]

EPL (1)

J. de Boor, D. S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, and V. Schmidt, “Temperature and structure size dependence of the thermal conductivity of porous silicon,” EPL 96(1), 16001 (2011).
[Crossref]

J. Alloys Compd. (1)

P. C. Ricci, R. Casula, G. Gulleri, F. Fumagalli, C. M. Carbonaro, and R. Corpino, “Mechanical stress in silicon nanosized architectures: Defects of SOD processed silica filler,” J. Alloys Compd. 602, 157–162 (2014).
[Crossref]

J. Appl. Phys. (4)

V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca i Cabarrocasb, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys. 90(7), 3276–3279 (2001).
[Crossref]

F. Haase, S. Kajari-Schröder, and R. Brendel, “High efficiency back-contact back-junction thin-film monocrystalline silicon solar cells from the porous silicon process,” J. Appl. Phys. 114(19), 194505 (2013).
[Crossref]

P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, and F. Marabelli, “P-type macroporous silicon for two-dimensional photonic crystals,” J. Appl. Phys. 92(12), 6966–6972 (2002).
[Crossref]

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light‐emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[Crossref]

J. Phys. C Solid State Phys. (1)

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).
[Crossref]

Nano Lett. (1)

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast all-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48(11), 1119–1125 (2010).
[Crossref]

Phys. Rev. B (3)

F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87(12), 125118 (2013).
[Crossref]

D. Abidi, B. Jusserand, and J.-L. Fave, “Raman scattering studies of heavily doped microcrystalline porous silicon and porous silicon free-standing membranes,” Phys. Rev. B 82(7), 075210 (2010).
[Crossref]

Phys. Rev. B Condens. Matter (2)

H. Tanino, A. Kuprin, H. Deai, and N. Koshida, “Raman study of free-standing porous silicon,” Phys. Rev. B Condens. Matter 53(4), 1937–1947 (1996).
[Crossref] [PubMed]

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B Condens. Matter 48(4), 2827–2830 (1993).
[Crossref] [PubMed]

Phys. Status Solidi (1)

S. Manotas, F. Agullo-Rueda, J. D. Moreno, F. Ben-Hander, R. Guerrero-Lemus, and J. M. Martinez-Duart, “Laser heating in porous silicon studie by micro-raman spectroscopy,” Phys. Status Solidi 182(1), 331–334 (2000).
[Crossref]

Semicond. Sci. Technol. (1)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Solid State Commun. (1)

I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun. 58(10), 739–741 (1986).
[Crossref]

Thin Solid Films (1)

D. Papadimitriou, J. Bitsakis, J. M. Lopez-Villegas, J. Samitier, and J. R. Morante, “Depth dependence of stress and porosity in porous silicon: a micro-Raman study,” Thin Solid Films 349(1), 293–297 (1999).
[Crossref]

Other (2)

N. Kumar, “Fabrication of n-type porous silicon membranes for sensing applications,” PhD Thesis, University of Trento, Trento, Italy, 2013, http://eprints-phd.biblio.unitn.it/1127/1/thesis.pdf

http://www.mathworks.com/matlabcentral/fileexchange/24916-baseline-fit

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Photograph of released FSMs which are bent by the mechanical stress accumulated during their etching. The surface in contact with the table is the concave side. (b) Defects on the porous silicon surface: (top) larger pores decorate the surface of surface of a free standing PSi membrane etched in n + silicon. The anisotropy of the etching is clearly underlined by the star shaped pores which indicate the {110} lattice directions (scale bar 1µm). (bottom) Top surface of a p + sample. The dark grooves are the result of the collapsing of neighbor pore walls (scale bar 5µm).
Fig. 2
Fig. 2 Raman spectra of (a) PSL and (b) FSM samples. The background below PSLs is related with the appearance of PL signal coming from the smaller nanostructures etched by the direct dissolution of PSi. FSMs show only a negligible increase of the background with etching time. The numbers refer to the thickness of each layer, related to their etching time. Data are smoothed using an Adjacent-averaging method. The inset shows the PL of a PSL, where the red arrow indicates the Raman peak of the silicon.
Fig. 3
Fig. 3 Raman shift vs FWHM. The shift is calculated by subtracting the wavenumber of the samples to that of the monocrystalline silicon. PSLs show a smaller slope compared to FSMs due to the mechanical constrain of the underlying substrate: once FSM is released from the wafer, it is free to bend and relax the internal stress as demonstrated by the larger shifts. Numbers refer to the thickness of the extrema layers for both PSL and FSM sample sets.
Fig. 4
Fig. 4 FWHM and Raman shift vs membrane thickness. The shift is calculated by subtracting the wavenumber of the samples to that of the monocrystalline silicon. Dotted lines are drawn as a guide for the eyes.
Fig. 5
Fig. 5 Differences between concave and convex surfaces of FSMs. Top half of the graph reports the difference of the width of the Raman peaks on the two surfaces (calculated as: concave - convex). The bottom half reports the peak width difference. The two symbols refer to the two sets of samples fabricated.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F(ε)=I( η ( δ+ε ) 2 δ+ ε 2 + 1η 1+ ε 2 )

Metrics