Abstract

We have proposed a full-solution polymethylmethacrylate (PMMA)-assisted spin-coating method for uniformly distributing silver nanowires, which are carried in PMMA, on both rigid and flexible substrates as transparent electrodes. High optical transmittance (~0.91, much better than that of a 80 nm thick ITO that is typically applied to solar cells), good electrical conductivity (~15 Ω/sq on average, comparable to that of ITO) and long-term stability have been demonstrated for the devices on 4” glass substrates, which are also better than the devices fabricated without the assistance of PMMA. The mechanism is presented through systematic investigation of the effects of two key processing parameters, i.e., the volume ratio of the Ag NWs in ethanol to the PMMA, and the second rotary speed of the spin-coating process. This method has been extended to flexible substrates. Good uniformity is also achieved over a large area of 5 cm × 5 cm. A simple application demonstration indicates again the great potential of our method for mass production of Ag NW networks, which are likely to replace ITO as transparent electrodes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Meter-scale transparent conductive circuits based on silver nanowire networks for rigid and flexible transparent light-emitting diode screens

Liu Yang, Xinan Xu, Yi Yuan, Zhihao Li, and Sailing He
Opt. Mater. Express 9(12) 4483-4496 (2019)

ITO-free large-area organic solar cells

Seungkeun Choi, William J. Potscavage, and Bernard Kippelen
Opt. Express 18(S3) A458-A466 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
    [Crossref]
  2. N. Nishimoto, Y. Yamada, Y. Ohnishi, N. Imawaka, and K. Yoshino, “Effect of temperature on the electrical properties of ITO in a TiO2/ITO film,” Phys. Status Solidi A 210(3), 589–593 (2013).
    [Crossref]
  3. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
    [Crossref]
  4. Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
    [Crossref] [PubMed]
  5. Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
    [Crossref]
  6. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
    [Crossref] [PubMed]
  7. S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
    [Crossref] [PubMed]
  8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [Crossref] [PubMed]
  9. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
    [Crossref] [PubMed]
  10. K. Rana, J. Singh, and J. H. Jong, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2646–2656 (2014).
    [Crossref]
  11. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  12. W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
    [Crossref] [PubMed]
  13. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano Lett. 10(4), 1276–1279 (2010).
    [Crossref] [PubMed]
  14. F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
    [Crossref]
  15. A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
    [Crossref] [PubMed]
  16. H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
    [Crossref] [PubMed]
  17. H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
    [Crossref]
  18. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
    [Crossref] [PubMed]
  19. X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
    [Crossref] [PubMed]
  20. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
    [Crossref] [PubMed]
  21. S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(103), A355–A362 (2013).
    [Crossref] [PubMed]
  22. V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
    [Crossref] [PubMed]
  23. A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res. 3(8), 564–573 (2010).
    [Crossref]
  24. C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
    [Crossref] [PubMed]
  25. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [Crossref] [PubMed]
  26. F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
    [Crossref] [PubMed]
  27. H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
    [Crossref] [PubMed]
  28. B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
    [Crossref] [PubMed]
  29. B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
    [Crossref] [PubMed]
  30. Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
    [Crossref] [PubMed]
  31. J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
    [Crossref] [PubMed]
  32. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [Crossref] [PubMed]
  33. A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
    [Crossref] [PubMed]
  34. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
    [Crossref]
  35. Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
    [Crossref]
  36. K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
    [Crossref]
  37. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
    [Crossref] [PubMed]
  38. L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
    [Crossref] [PubMed]

2015 (2)

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref] [PubMed]

2014 (6)

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref] [PubMed]

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref] [PubMed]

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

K. Rana, J. Singh, and J. H. Jong, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2646–2656 (2014).
[Crossref]

2013 (5)

N. Nishimoto, Y. Yamada, Y. Ohnishi, N. Imawaka, and K. Yoshino, “Effect of temperature on the electrical properties of ITO in a TiO2/ITO film,” Phys. Status Solidi A 210(3), 589–593 (2013).
[Crossref]

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(103), A355–A362 (2013).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

2012 (5)

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

2011 (6)

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
[Crossref] [PubMed]

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref] [PubMed]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

2010 (5)

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res. 3(8), 564–573 (2010).
[Crossref]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano Lett. 10(4), 1276–1279 (2010).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

2009 (2)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

2008 (4)

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[Crossref]

2005 (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

2004 (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

2003 (1)

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Afshinmanesh, F.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref] [PubMed]

Ahmed, S.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Ahn, J.-H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

An, J.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

An, K. S.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Barnes, T. M.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Beard, M. C.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Bergeson, J. D.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Blackburn, J. L.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Brenner, T. J. K.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Brongersma, M. L.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref] [PubMed]

Bult, J.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Burkhard, G. F.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Carnahan, D.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

Carney, T. J.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Chang, S. J.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Cheng, J.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

Choi, J.-Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Choy, W. C. H.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref] [PubMed]

Coleman, J. N.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref] [PubMed]

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Connor, S. T.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano Lett. 10(4), 1276–1279 (2010).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Coull, R.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref] [PubMed]

Cui, Y.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano Lett. 10(4), 1276–1279 (2010).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Curto, A. G.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref] [PubMed]

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

Fan, B.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Fan, S.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Friend, R. H.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Gao, J.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Gaynor, W.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Giersig, M.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Goldberg, B. B.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Gu, M.

Guo, C.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

Guo, Y.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

Han, B.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Hao, Y.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Herczynski, A.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

Herricks, T.

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Hong, B. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Hsu, P. C.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Hu, L.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Huang, Y.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

Hwang, J.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Imawaka, N.

N. Nishimoto, Y. Yamada, Y. Ohnishi, N. Imawaka, and K. Yoshino, “Effect of temperature on the electrical properties of ITO in a TiO2/ITO film,” Phys. Status Solidi A 210(3), 589–593 (2013).
[Crossref]

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Ishikawa, F. N.

A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res. 3(8), 564–573 (2010).
[Crossref]

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Jia, B.

Jiao, L.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Jong, J. H.

K. Rana, J. Singh, and J. H. Jong, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2646–2656 (2014).
[Crossref]

Jung, M. W.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Kabra, D.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Kang, M. A.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Kempa, K.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Kim, A.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Kim, C.-H.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Kim, H. S.

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, K.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, S. H.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Kitt, A.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Kong, D.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Korte, K. E.

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[Crossref]

Kumar, A.

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res. 3(8), 564–573 (2010).
[Crossref]

Larsen, B. A.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Lee, J. Y.

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Lee, J.-Y.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano Lett. 10(4), 1276–1279 (2010).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Lee, S. S.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Li, K.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref] [PubMed]

Li, R.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

Li, X.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Lim, J.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Lin, Q.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Liu, C.-H.

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
[Crossref] [PubMed]

Liu, J.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref] [PubMed]

Liu, Z.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Lu, C. Z.

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

Lu, H.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref] [PubMed]

Luo, J.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

Lyons, P. E.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref] [PubMed]

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Madaria, A. R.

A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res. 3(8), 564–573 (2010).
[Crossref]

Magnuson, C. W.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Mao, J.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

Massip, S.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Mayers, B.

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

McGehee, M. D.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Milaninia, K. M.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref] [PubMed]

Minami, T.

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Moon, J.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Morgenstern, F. S. F.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Müllen, K.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Myung, S.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Nishimoto, N.

N. Nishimoto, Y. Yamada, Y. Ohnishi, N. Imawaka, and K. Yoshino, “Effect of temperature on the electrical properties of ITO in a TiO2/ITO film,” Phys. Status Solidi A 210(3), 589–593 (2013).
[Crossref]

Ohnishi, Y.

N. Nishimoto, Y. Yamada, Y. Ohnishi, N. Imawaka, and K. Yoshino, “Effect of temperature on the electrical properties of ITO in a TiO2/ITO film,” Phys. Status Solidi A 210(3), 589–593 (2013).
[Crossref]

Ouyang, J.

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

Ouyang, Z.

Pei, K.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Peng, Q.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

Peng, W.

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Peumans, P.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano Lett. 10(4), 1276–1279 (2010).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Rana, K.

K. Rana, J. Singh, and J. H. Jong, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2646–2656 (2014).
[Crossref]

Reese, M. O.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Ren, X.

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref] [PubMed]

Ren, Z.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Rickard, D.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref] [PubMed]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Rong, Q.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

Ruan, Z.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Ruoff, R. S.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Scardaci, V.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref] [PubMed]

Singh, J.

K. Rana, J. Singh, and J. H. Jong, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2646–2656 (2014).
[Crossref]

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Skrabalak, S. E.

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[Crossref]

Song, W.

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Suk, J. W.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Sun, K.

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

Sun, T.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Swan, A. K.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

van de Lagemaat, J.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

van Hulst, N. F.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref] [PubMed]

Wang, S.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Wang, Y.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Won, Y.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Woo, K.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Wu, H.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Wu, Z.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Xia, Y.

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[Crossref]

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Xian, X.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Xie, S.

Yamada, Y.

N. Nishimoto, Y. Yamada, Y. Ohnishi, N. Imawaka, and K. Yoshino, “Effect of temperature on the electrical properties of ITO in a TiO2/ITO film,” Phys. Status Solidi A 210(3), 589–593 (2013).
[Crossref]

Yan, C.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref] [PubMed]

Yoshino, K.

N. Nishimoto, Y. Yamada, Y. Ohnishi, N. Imawaka, and K. Yoshino, “Effect of temperature on the electrical properties of ITO in a TiO2/ITO film,” Phys. Status Solidi A 210(3), 589–593 (2013).
[Crossref]

Yu, R. M.

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

Yu, X.

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref] [PubMed]

Yu, Z.

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Zeng, X. Y.

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

Zhang, D.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref] [PubMed]

Zhang, J.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Zhang, L.

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Zhang, Q. K.

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

Zhang, X.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

Zhang, Y.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref] [PubMed]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Zheng, Z.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref] [PubMed]

Zhi, L.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Zhou, C.

A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res. 3(8), 564–573 (2010).
[Crossref]

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

ACS Nano (5)

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref] [PubMed]

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Adv. Funct. Mater. (1)

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

Adv. Mater. (6)

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref] [PubMed]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Energy Environ. Sci. (1)

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

J. Mater. Chem. (1)

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

K. Rana, J. Singh, and J. H. Jong, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2646–2656 (2014).
[Crossref]

Nano Lett. (7)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano Lett. 10(4), 1276–1279 (2010).
[Crossref] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref] [PubMed]

Nano Res. (1)

A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res. 3(8), 564–573 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5, 5674 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

Nature (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Status Solidi A (1)

N. Nishimoto, Y. Yamada, Y. Ohnishi, N. Imawaka, and K. Yoshino, “Effect of temperature on the electrical properties of ITO in a TiO2/ITO film,” Phys. Status Solidi A 210(3), 589–593 (2013).
[Crossref]

Science (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Small (3)

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref] [PubMed]

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref] [PubMed]

J. Gao, K. Pei, T. Sun, Y. Wang, L. Zhang, W. Peng, Q. Lin, M. Giersig, K. Kempa, Z. Ren, and Y. Wang, “Transparent nanowire network electrode for textured semiconductors,” Small 9(5), 733–737 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) A photo and (b) An infrared image of Ag NW network on a 4” glass substrate. SEM images of the Ag NW network on the glass substrate with different magnifications: (b) top view, (c, d) tilted view at 45°. The scale bars are all 1 μm in the three SEM images.
Fig. 2
Fig. 2 (a) Transmission spectra at different distances from the center to the edge of the 4” transparent electrode fabricated by the PMMA-assisted spin-coating method. Comparison between the spin-coating methods with and without the assistance of PMMA in terms of (b) sheet resistance, Rsh, at different distances from the center to the edge and (c) sheet resistance variation, ΔRsh (normalized to the initial value), after being stored in air for a certain period of time (where the grey solid line and the grey dashed line indicate the average ΔRsh of 5.98% and 13.7% for samples fabricated by the spin-coating method assisted with and without PMMA, respectively).
Fig. 3
Fig. 3 The effects of various parameters of the PMMA-assisted spin-coating method on the optical transmission and sheet resistance, Rsh, of the fabricated Ag NW networks on glass substrates. (a) Transmission spectra and Rsh (black dashed curve) for different volume ratio, X, of the Ag NW suspension in PMMA at the second rotary speed, Y = 4000 rpm. (b) Transmission spectra and (c) Rsh (black dashed curve) for different second rotary speed, Y, with X = 1/2.5. In Fig. (c), the corresponding thicknesses of the Ag NW-PMMA film (red solid curve) before the PMMA is removed are also shown by the right axis.
Fig. 4
Fig. 4 SEM images of Ag NW networks fabricated at different second rotary speeds, i.e., Y = (a) 3000 rpm, (b) 4000 rpm, (c) 5000 rpm, (d) 6000 rpm, (e) 7000 rpm, and (f) 8000 rpm, respectively.
Fig. 5
Fig. 5 (a) and (b) Photos of Ag NW networks on a flexible PDMS substrate with an area of 5 cm × 5 cm. (c) Transmittance and Rsh (black dashed line) at different distances from the center to the edge of the transparent electrode on the flexible PDMS substrate.
Fig. 6
Fig. 6 Practical application of the conducting Ag NW networks fabricated by our PMMA-assisted spin-coating method in a LED-driving circuit: (a) the circuit in use; Ag NW networks are distributed on (b) the rigid glass substrate, (c) the flat PDMS substrate before bending, (d) the PDMS substrate after convex bending, and (e) the PDMS substrate after concave bending.
Fig. 7
Fig. 7 Transmission spectra at different distances from the center to the edge of the 4” transparent electrode fabricated by the conventional spin-coating method without the assistance of PMMA.
Fig. 8
Fig. 8 No carbon is detected by the energy-dispersive X-ray spectroscopy in conjunction with the scanning electron microscopy. O, Na, Al, Si and K are mainly from the glass substrate.
Fig. 9
Fig. 9 SEM images of Ag NW networks fabricated with (a) PMMA 679.04 and Y = 5000 rpm; (b, c) PMMA 669.06 and Y = 4000 rpm.
Fig. 10
Fig. 10 The resistances of one typical sample of our Ag NW network on the PDMS substrate (a) before bending, (b) after convex bending and (c) after concave bending. Silver paste was applied at the opposite ends of the sample to make good electrical contacts to connect to the multimeter through electrical cables.

Tables (1)

Tables Icon

Table 1 Comparison of the optical and electrical performances of our work, ITO, as well as some typical Ag NW networks fabricated by different methods.

Metrics