Abstract

Significant extinction from the visible to mid-infrared makes fractal shells very attractive as aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells’ extinction is caused mainly by the absorption. The Mie scattering resonance at 560 nm of a silica core with 780 nm diameter is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. The silica vibrational stretching band at 9 μm in absorption also disappears. Effective medium theory supports our experiments and indicates that light goes mostly through the epsilon-near-zero shell with approximately wavelength independent absorption rate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates

Clayton T. DeVault, Vladimir A. Zenin, Anders Pors, Krishnakali Chaudhuri, Jongbum Kim, Alexandra Boltasseva, Vladimir M. Shalaev, and Sergey I. Bozhevolnyi
Optica 5(12) 1557-1563 (2018)

Broadband zero backward scattering by all-dielectric core-shell nanoparticles

Runmin Li, Xin Zhou, Mingcheng Panmai, Jin Xiang, Haiying Liu, Min Ouyang, Haihua Fan, Qiaofeng Dai, and Zhongchao Wei
Opt. Express 26(22) 28891-28901 (2018)

Transparent conductive oxides for the epsilon-near-zero Tamm plasmon polaritons

Rashid G. Bikbaev, Stepan Ya. Vetrov, and Ivan V. Timofeev
J. Opt. Soc. Am. B 36(10) 2817-2823 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
    [Crossref]
  2. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am. 65(4), 376–379 (1975).
    [Crossref]
  3. H. Chew and M. Kerker, “Abnormally low electromagnetic scattering cross sections,” J. Opt. Soc. Am. 66(5), 445–449 (1976).
    [Crossref]
  4. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [Crossref] [PubMed]
  5. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
    [Crossref] [PubMed]
  6. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
    [Crossref]
  7. F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
    [Crossref] [PubMed]
  8. C. Graf and A. van Blaaderen, “Metallodielectric colloidal core−shell particles for photonic applications,” Langmuir 18(2), 524–534 (2002).
    [Crossref]
  9. T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, “Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads,” Adv. Mater. 13(16), 1253–1256 (2001).
    [Crossref]
  10. C. A. Rohde, K. Hasegawa, and M. Deutsch, “Coherent light scattering from semicontinuous silver nanoshells near the percolation threshold,” Phys. Rev. Lett. 96(4), 045503 (2006).
    [Crossref] [PubMed]
  11. D. Stauffer, Introduction to Percolation Theory (CRC Press, 1994).
  12. Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P. Gadenne, “Scaling theory for the optical properties of semicontinuous metal films,” Phys. Rev. B Condens. Matter 43(13), 11342–11352 (1991).
    [Crossref] [PubMed]
  13. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
    [Crossref] [PubMed]
  14. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Comment on “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters”,” Phys. Rev. Lett. 75(12), 2450 (1995).
    [Crossref] [PubMed]
  15. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical absorption and localization of eigenmodes in disordered clusters,” Phys. Rev. B Condens. Matter 51(1), 185–195 (1995).
    [Crossref] [PubMed]
  16. M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
    [Crossref] [PubMed]
  17. M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(6), 6494–6507 (1997).
    [Crossref]
  18. S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
    [Crossref]
  19. D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-dielectric composite filters with controlled spectral windows of transparency,” J. Nonlinear Opt. Phys. Mater. 12(4), 419–440 (2003).
    [Crossref]
  20. P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
    [Crossref]
  21. M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
    [Crossref]
  22. A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).
  23. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. 416(7), 636–664 (1935).
    [Crossref]
  24. T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
    [Crossref]
  25. Application note, “Applications and Use of Integrating Spheres,” (PerkinElmer Inc., 2004), http://www.perkinelmer.com/CMSResources/Images/44-74191APP_LAMBDA650IntegratingSpheres.pdf
  26. A. L. Smith, “Infrared Spectra-Structure Correlations for Organosilicon Compounds,” Spectrochim. Acta 16(1–2), 87–105 (1960).
    [Crossref]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).
  28. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]
  29. T. R. Steyer, K. L. Day, and D. R. Huffman, “Infrared absorption by small amorphous quartz spheres,” Appl. Opt. 13(7), 1586–1590 (1974).
    [Crossref] [PubMed]
  30. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  31. K. P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
    [Crossref] [PubMed]
  32. G. P. Motulevich, Optical Properties of Metals (Consultants Bureau, 1973).
  33. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36(21), 5188–5198 (1997).
    [Crossref] [PubMed]

2011 (1)

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

2010 (1)

K. P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

2008 (1)

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

2007 (2)

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[Crossref] [PubMed]

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

2006 (1)

C. A. Rohde, K. Hasegawa, and M. Deutsch, “Coherent light scattering from semicontinuous silver nanoshells near the percolation threshold,” Phys. Rev. Lett. 96(4), 045503 (2006).
[Crossref] [PubMed]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

2003 (1)

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-dielectric composite filters with controlled spectral windows of transparency,” J. Nonlinear Opt. Phys. Mater. 12(4), 419–440 (2003).
[Crossref]

2002 (2)

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[Crossref]

C. Graf and A. van Blaaderen, “Metallodielectric colloidal core−shell particles for photonic applications,” Langmuir 18(2), 524–534 (2002).
[Crossref]

2001 (1)

T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, “Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads,” Adv. Mater. 13(16), 1253–1256 (2001).
[Crossref]

1999 (1)

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

1998 (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
[Crossref]

1997 (2)

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(6), 6494–6507 (1997).
[Crossref]

Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36(21), 5188–5198 (1997).
[Crossref] [PubMed]

1996 (1)

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[Crossref] [PubMed]

1995 (2)

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Comment on “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters”,” Phys. Rev. Lett. 75(12), 2450 (1995).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical absorption and localization of eigenmodes in disordered clusters,” Phys. Rev. B Condens. Matter 51(1), 185–195 (1995).
[Crossref] [PubMed]

1992 (1)

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

1991 (1)

Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P. Gadenne, “Scaling theory for the optical properties of semicontinuous metal films,” Phys. Rev. B Condens. Matter 43(13), 11342–11352 (1991).
[Crossref] [PubMed]

1976 (1)

1975 (1)

1974 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1965 (1)

1960 (1)

A. L. Smith, “Infrared Spectra-Structure Correlations for Organosilicon Compounds,” Spectrochim. Acta 16(1–2), 87–105 (1960).
[Crossref]

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
[Crossref]

Aigouy, L.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Alù, A.

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Averitt, R.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
[Crossref]

Avny, Y.

T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, “Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads,” Adv. Mater. 13(16), 1253–1256 (2001).
[Crossref]

Bergman, D. J.

Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P. Gadenne, “Scaling theory for the optical properties of semicontinuous metal films,” Phys. Rev. B Condens. Matter 43(13), 11342–11352 (1991).
[Crossref] [PubMed]

Boccara, A.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Borneman, J. D.

K. P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Chen, A. L.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

Chen, K. P.

K. P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Chettiar, U. K.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

Chew, H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Davidov, D.

T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, “Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads,” Adv. Mater. 13(16), 1253–1256 (2001).
[Crossref]

Day, K. L.

Desmarest, C.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Deutsch, M.

C. A. Rohde, K. Hasegawa, and M. Deutsch, “Coherent light scattering from semicontinuous silver nanoshells near the percolation threshold,” Phys. Rev. Lett. 96(4), 045503 (2006).
[Crossref] [PubMed]

Deutscher, G.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P. Gadenne, “Scaling theory for the optical properties of semicontinuous metal films,” Phys. Rev. B Condens. Matter 43(13), 11342–11352 (1991).
[Crossref] [PubMed]

Drachev, V. P.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

K. P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

Engheta, N.

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Fang, J.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

Gadenne, P.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P. Gadenne, “Scaling theory for the optical properties of semicontinuous metal films,” Phys. Rev. B Condens. Matter 43(13), 11342–11352 (1991).
[Crossref] [PubMed]

Genov, D. A.

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-dielectric composite filters with controlled spectral windows of transparency,” J. Nonlinear Opt. Phys. Mater. 12(4), 419–440 (2003).
[Crossref]

George, T. F.

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical absorption and localization of eigenmodes in disordered clusters,” Phys. Rev. B Condens. Matter 51(1), 185–195 (1995).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Comment on “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters”,” Phys. Rev. Lett. 75(12), 2450 (1995).
[Crossref] [PubMed]

Gouesbet, G.

Graf, C.

C. Graf and A. van Blaaderen, “Metallodielectric colloidal core−shell particles for photonic applications,” Langmuir 18(2), 524–534 (2002).
[Crossref]

Gréhan, G.

Grésillon, S.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Guo, L. X.

Halas, N.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
[Crossref]

Halas, N. J.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[Crossref]

Hasegawa, K.

C. A. Rohde, K. Hasegawa, and M. Deutsch, “Coherent light scattering from semicontinuous silver nanoshells near the percolation threshold,” Phys. Rev. Lett. 96(4), 045503 (2006).
[Crossref] [PubMed]

Huffman, D. R.

Jackson, J. B.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[Crossref]

Ji, T.

T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, “Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads,” Adv. Mater. 13(16), 1253–1256 (2001).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Julien, C.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

Kerker, M.

Kildishev, A. V.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

K. P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Kundu, J.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

Lee, T. R.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[Crossref]

Lirtsman, V. G.

T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, “Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads,” Adv. Mater. 13(16), 1253–1256 (2001).
[Crossref]

Malitson, I.

Muratov, L. S.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Comment on “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters”,” Phys. Rev. Lett. 75(12), 2450 (1995).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical absorption and localization of eigenmodes in disordered clusters,” Phys. Rev. B Condens. Matter 51(1), 185–195 (1995).
[Crossref] [PubMed]

Nyga, P.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

Oldenburg, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
[Crossref]

Pandey, L. N.

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical absorption and localization of eigenmodes in disordered clusters,” Phys. Rev. B Condens. Matter 51(1), 185–195 (1995).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Comment on “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters”,” Phys. Rev. Lett. 75(12), 2450 (1995).
[Crossref] [PubMed]

Pham, T.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[Crossref]

Prokopeva, L. J.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

Quelin, X.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Ren, K. F.

Rivoal, J.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Rohde, C. A.

C. A. Rohde, K. Hasegawa, and M. Deutsch, “Coherent light scattering from semicontinuous silver nanoshells near the percolation threshold,” Phys. Rev. Lett. 96(4), 045503 (2006).
[Crossref] [PubMed]

Sarychev, A.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-dielectric composite filters with controlled spectral windows of transparency,” J. Nonlinear Opt. Phys. Mater. 12(4), 419–440 (2003).
[Crossref]

Shalaev, V.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Shalaev, V. M.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

K. P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-dielectric composite filters with controlled spectral windows of transparency,” J. Nonlinear Opt. Phys. Mater. 12(4), 419–440 (2003).
[Crossref]

Shubin, V.

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[Crossref] [PubMed]

Smith, A. L.

A. L. Smith, “Infrared Spectra-Structure Correlations for Organosilicon Compounds,” Spectrochim. Acta 16(1–2), 87–105 (1960).
[Crossref]

Steyer, T. R.

Stockman, M. I.

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(6), 6494–6507 (1997).
[Crossref]

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical absorption and localization of eigenmodes in disordered clusters,” Phys. Rev. B Condens. Matter 51(1), 185–195 (1995).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Comment on “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters”,” Phys. Rev. Lett. 75(12), 2450 (1995).
[Crossref] [PubMed]

Tam, F.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

Thoreson, M. D.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

van Blaaderen, A.

C. Graf and A. van Blaaderen, “Metallodielectric colloidal core−shell particles for photonic applications,” Langmuir 18(2), 524–534 (2002).
[Crossref]

Wang, H.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

Westcott, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
[Crossref]

Wu, Z. S.

Yagil, Y.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P. Gadenne, “Scaling theory for the optical properties of semicontinuous metal films,” Phys. Rev. B Condens. Matter 43(13), 11342–11352 (1991).
[Crossref] [PubMed]

Yosefin, M.

Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P. Gadenne, “Scaling theory for the optical properties of semicontinuous metal films,” Phys. Rev. B Condens. Matter 43(13), 11342–11352 (1991).
[Crossref] [PubMed]

Adv. Mater. (1)

T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, “Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads,” Adv. Mater. 13(16), 1253–1256 (2001).
[Crossref]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

Chem. Phys. Lett. (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
[Crossref]

J. Appl. Phys. (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
[Crossref]

J. Chem. Phys. (1)

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

J. Nanophotonics (1)

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-dielectric composite filters with controlled spectral windows of transparency,” J. Nonlinear Opt. Phys. Mater. 12(4), 419–440 (2003).
[Crossref]

J. Opt. Soc. Am. (3)

Langmuir (2)

C. Graf and A. van Blaaderen, “Metallodielectric colloidal core−shell particles for photonic applications,” Langmuir 18(2), 524–534 (2002).
[Crossref]

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[Crossref]

Nano Lett. (1)

K. P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter (4)

Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P. Gadenne, “Scaling theory for the optical properties of semicontinuous metal films,” Phys. Rev. B Condens. Matter 43(13), 11342–11352 (1991).
[Crossref] [PubMed]

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical absorption and localization of eigenmodes in disordered clusters,” Phys. Rev. B Condens. Matter 51(1), 185–195 (1995).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(6), 6494–6507 (1997).
[Crossref]

Phys. Rev. Lett. (3)

S. Grésillon, L. Aigouy, A. Boccara, J. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Comment on “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters”,” Phys. Rev. Lett. 75(12), 2450 (1995).
[Crossref] [PubMed]

C. A. Rohde, K. Hasegawa, and M. Deutsch, “Coherent light scattering from semicontinuous silver nanoshells near the percolation threshold,” Phys. Rev. Lett. 96(4), 045503 (2006).
[Crossref] [PubMed]

Spectrochim. Acta (1)

A. L. Smith, “Infrared Spectra-Structure Correlations for Organosilicon Compounds,” Spectrochim. Acta 16(1–2), 87–105 (1960).
[Crossref]

Other (5)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).

Application note, “Applications and Use of Integrating Spheres,” (PerkinElmer Inc., 2004), http://www.perkinelmer.com/CMSResources/Images/44-74191APP_LAMBDA650IntegratingSpheres.pdf

G. P. Motulevich, Optical Properties of Metals (Consultants Bureau, 1973).

D. Stauffer, Introduction to Percolation Theory (CRC Press, 1994).

A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Normalized extinction spectra of the core-shell particles with different gold shell coverage and morphologies shown in Fig. 2.
Fig. 2
Fig. 2 FESEM images of the core-shell particles with different gold shell coverage and morphologies.
Fig. 3
Fig. 3 Measured cross sections, CFS, CEXT, CBS, and CR spectra of a submonolayer of bare silica microspheres “0” (solid lines) and gold-coated silica microspheres “4” (dashed lines).
Fig. 4
Fig. 4 Extinction cross-section spectra for different metal filling fraction, f (0, 0.4, 0.48, 0.5, and 0.505) simulated for the visible-near IR and IR spectral range.
Fig. 5
Fig. 5 Real and imaginary effective epsilon of gold film with different metal filling fraction f (0.503, 0.504, 0.50475, 0.505, 0.506).

Tables (1)

Tables Icon

Table 1 Experimental (EXP) and simulations’ (SIM) parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f ε m ε br ε m +2 ε br +( 1f ) ε h ε br ε h +2 ε br =0
C ext = 2π k 2 m=1 (2m+1)Re( a m + b m )

Metrics