Abstract

While the field of plasmonics has grown significantly in recent years, the relatively high losses and limited material choices have remained a challenge for the development of many device concepts. The decay of plasmons into hot carrier excitations is one of the main loss mechanisms; however, this process offers an opportunity for the direct utilization of loss if excited carriers can be collected prior to thermalization. From a materials point-of-view, noble metals (especially gold and silver) are almost exclusively employed in these hot carrier plasmonic devices; nevertheless, many other materials may offer advantages for collecting these hot carriers. In this manuscript, we present results for 16 materials ranging from pure metals and alloys to nanowires and graphene and show their potential applicability for hot carrier excitation and extraction. By considering the expected hot carrier distributions based on the electron density of states for the materials, we predict the preferred hot carrier type for collection and their expected performance under different illumination conditions. By considering materials not traditionally used in plasmonics, we find many promising alternative materials for the emerging field of hot carrier plasmonics.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexandra Boltasseva and Jennifer Dionne, "Plasmonics feature issue: publisher’s note," Opt. Mater. Express 5, 2978-2978 (2015)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-5-12-2978

24 November 2015: A correction was made to the title.


OSA Recommended Articles
Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics

F. Pelayo García de Arquer and Gerasimos Konstantatos
Opt. Express 23(11) 14715-14723 (2015)

Silver-based plasmonics: golden material platform and application challenges [Invited]

Aleksandr S. Baburin, Alexander M. Merzlikin, Alexander V. Baryshev, Ilya A. Ryzhikov, Yuri V. Panfilov, and Ilya A. Rodionov
Opt. Mater. Express 9(2) 611-642 (2019)

Effect of anisotropic electron momentum distribution of surface plasmon on internal photoemission of a Schottky hot carrier device

Xin-Hao Li, Jeffrey B. Chou, Wei Lek Kwan, Asma M. Elsharif, and Sang-Gook Kim
Opt. Express 25(8) A264-A273 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  2. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  3. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  4. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref] [PubMed]
  5. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
    [PubMed]
  6. F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
    [Crossref]
  7. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
    [Crossref] [PubMed]
  8. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  9. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref] [PubMed]
  10. H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
    [Crossref] [PubMed]
  11. T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
    [Crossref] [PubMed]
  12. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [Crossref] [PubMed]
  13. M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
    [Crossref]
  14. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
    [Crossref]
  15. R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
    [Crossref] [PubMed]
  16. M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
    [Crossref]
  17. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
    [Crossref] [PubMed]
  18. J. Spitaler and L. Pardini, “Electronic-Structure Calculations,” http://exciting-code.org/beryllium-electronic-structure-calculations .
  19. L. H. Bennett, Electronic Density of States: Based on Invited and Contributed Papers and Discussion (U.S. National Bureau of Standards, 1971).
  20. F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
    [Crossref]
  21. D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
    [Crossref]
  22. K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
    [Crossref]
  23. M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).
  24. S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
  25. M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
    [Crossref]
  26. A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).
  27. V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
    [Crossref]
  28. A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
    [Crossref] [PubMed]
  29. E. Faizabadi, “Single wall carbon nanotubes in the presence of vacancies and related energy gaps,” in Electronic Properties of Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2011).
  30. K. Nakada and A. Ishii, “DFT Calculation for Adatom Adsorption on Graphene,” in Graphene Simulation, J. R. Gong, ed. (Intech, 2011).
  31. E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
    [Crossref]
  32. A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
    [Crossref]
  33. A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
    [Crossref] [PubMed]
  34. A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
    [Crossref]
  35. K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
  36. K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
    [Crossref]
  37. D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
    [Crossref] [PubMed]

2015 (6)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]

A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
[Crossref]

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

2014 (9)

A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref] [PubMed]

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

2013 (4)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).

2012 (5)

M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref] [PubMed]

D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]

2011 (3)

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).

2009 (1)

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

2008 (2)

M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
[Crossref]

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

2007 (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

1999 (1)

V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]

1980 (1)

E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]

Ahluwalia, P. K.

A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref] [PubMed]

Aivazian, G.

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

Asvinimeenaatci, A. T.

S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).

Atwater, H. A.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Bach, U.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref] [PubMed]

Banyai, D.

A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref] [PubMed]

Belin-Ferre, E.

V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]

Bonn, M.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Bossard, J. A.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Brick, D.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Burkle, M.

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

Card, H. C.

E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]

Catchpole, K. R.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Centeno, A.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Chalabi, H.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Chan, E. Y.

E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Cobden, D.

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

Cuevas, J. C.

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

de Arquer, F. P. G.

F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Elbahri, M.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]

Elorza, A. Z.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Faupel, F.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]

Foo, M. H. F.

D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]

Foulkes, W. M. C.

D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]

Fournee, V.

V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]

Goddard, W. A.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Gong, T.

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

Govorov, A. O.

A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
[Crossref]

Hafner, M.

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Hedayati, M. K.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]

Horsfield, A. P.

D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]

Huniar, U.

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

Iyakutti, K.

S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).

Jafari, M.

M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).

Jamnezhad, H.

M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).

Jarillo-Herrero, P.

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

Jemmy Cinthia, A.

S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).

Jensen, S. A.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Jermyn, A. S.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Jones, A. M.

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

Jozwik, P.

K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]

Kanagaprabha, S.

S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).

Karg, M.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref] [PubMed]

Karna, S. P.

A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref] [PubMed]

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Kobiela, T.

K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]

Konstantatos, G.

F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Koppens, F. H. L.

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Krupski, A.

K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]

Krupski, K.

K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]

Kulkarni, V.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Kumar, A.

A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref] [PubMed]

A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).

Lee, G. P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref] [PubMed]

Leenheer, A. J.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Levitov, L. S.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Lewis, N. S.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Liu, J. G.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Liu, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Luque, A.

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

Ma, Q.

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

Manjavacas, A.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Marti, A.

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

Mason, D. R.

D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]

Massicotte, M.

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Mazin, I.

V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Mendes, M. J.

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

Mihi, A.

F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Moors, M.

K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]

Mulvaney, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref] [PubMed]

Munday, J. N.

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

Narang, P.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Nazarzadeh, L.

M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Ojha, D. P.

A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).

Ortigoza, M. A.

M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
[Crossref]

Pandey, R.

A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref] [PubMed]

Papaconstantopoulos, D. A.

V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]

Pauly, F.

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

Pesquera, A.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Piatkowski, L.

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

Race, C. P.

D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]

Rahman, T. S.

M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
[Crossref]

Rajeswarapalanichamy, R.

S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).

Reineck, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref] [PubMed]

Ross, J. S.

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

Schoen, D.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Schon, G.

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

Sobhani, A.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Song, J. C. W.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Sudhapriyanga, G.

S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).

Sun, D.

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

Sundararaman, R.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Sutton, A. P.

D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]

Teich, M. C.

E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]

Tielrooij, K. J.

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

Tobias, I.

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

van Hulst, N. F.

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

Viljas, J. K.

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Wang, Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Werner, D. H.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

White, T. P.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Woessner, A.

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

Wohlthat, S.

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

Xu, X.

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

Yao, W.

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Zhang, H.

A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
[Crossref]

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

ACS Nano (2)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Acta Phys. Pol. A (2)

S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).

A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).

Adv. Mater. (1)

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]

Iranian J. Sci. and Tech. (1)

M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).

J. Appl. Phys. (1)

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

J. Phys. Chem. C (1)

A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
[Crossref]

J. Phys.- Condensed Mat. (1)

K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).

Materials (Basel) (2)

K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]

Nano Lett. (5)

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Nat. Phys. (1)

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]

New J. Phys. (2)

F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]

D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]

Philos. Mag. B (1)

V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]

Phys. Chem. Chem. Phys. (1)

A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref] [PubMed]

Phys. Rev. B (1)

M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
[Crossref]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Other (4)

J. Spitaler and L. Pardini, “Electronic-Structure Calculations,” http://exciting-code.org/beryllium-electronic-structure-calculations .

L. H. Bennett, Electronic Density of States: Based on Invited and Contributed Papers and Discussion (U.S. National Bureau of Standards, 1971).

E. Faizabadi, “Single wall carbon nanotubes in the presence of vacancies and related energy gaps,” in Electronic Properties of Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2011).

K. Nakada and A. Ishii, “DFT Calculation for Adatom Adsorption on Graphene,” in Graphene Simulation, J. R. Gong, ed. (Intech, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Calculations of hot carrier distributions based on the ideal free electron model. (a) Parabolic EDOS as a function of energy (electron energy minus Fermi energy) where EF is ~11.7 eV for a metal like Al. EDOS is relatively flat for carriers with energies within ± 4 eV of the Fermi energy. (b) Hot carrier energy distribution upon excitation by 600 nm illumination (2.07 eV). Nearly uniform distributions for both hot electrons and holes are obtained. (c) Hot carrier energy distribution under broadband illumination (i.e. AM1.5G solar spectrum). The distribution is centralized near the Fermi level for both carriers, which is less favorable for hot carrier injection.
Fig. 2
Fig. 2 Calculation of hot carrier distributions based on the modified EDOS models. (a) Ideal parabolic EDOS with the Fermi level extremely close to the band edge, leaving a large concentration of Fermi gas electrons within a narrow energy range below the Fermi energy. (b) Hot electron energy distribution under illumination by monochromatic light using the EDOS of (a). The hot carrier distribution has a peak that shifts toward higher energy as the energy of the absorbed photon increases. (c) Alternative EDOS distributions yielding higher densities of vacancy states above the Fermi level. Three models (EDOS varies as ~ E , ~ E 2 , or ~) are considered for the modified EDOS. (d) The resulting hot electron distributions under AM1.5G illumination shift toward higher energies for EDOS functions that increase more rapidly with E. Distributions with a larger fraction of high energy carriers are more favorable for hot electron extraction under broad-band illumination.
Fig. 3
Fig. 3 EDOS and hot carrier distributions for common plasmonic materials: Ag, Al, Au and Cu. (a) EDOS for these four materials. Except Al, all of these materials exhibit a much higher density of states below the Fermi level. Under monochromatic illumination, hot carrier distributions are created from incident photons with wavelengths: (b) 1.5 μm (0.83 eV), (c) 700 nm (1.78 eV), and (d) 400 nm (3.11 eV). Low photon energies yield relatively uniform hot carrier distributions for all four metals; however, upon higher energy illumination, peaks begin to appear due to high densities of occupied states below the Fermi level for Ag, Au, and Cu. Under 700 nm illumination Au and Cu are more efficient in hole extraction than electron extraction because the distribution of hot holes is peaked further from the Fermi level.
Fig. 4
Fig. 4 EDOS and hot carrier distributions for Fe, Pt, Ti and Y. (a) More complex EDOS profiles are obtained for these metals as a result of their more complicated band structures. Hot carrier distributions are excited by (b) 1.5 μm (0.83 eV), (c) 700 nm (1.78 eV), and (d) 400 nm (3.11 eV) illumination. More complex patterns in the hot carrier distributions are observed, and the relative positions of peaks (and hence the preferred carrier collection types) depend on the incident photon energy.
Fig. 5
Fig. 5 EDOS and hot carrier distributions for various alloys. (a) The EDOS of alloys can be engineered so that they differ significantly from their component metals. Hot carrier energy distribution upon excitation by (b) 1.5 μm, (c) 700 nm, and (d) 400 nm illumination. As in pure metals, the peaks in the distribution vary with both material choice and photon excitation energy. By varying the alloy composition, a range of EDOS possibilities is expected for each of the alloys.
Fig. 6
Fig. 6 EDOS and hot carrier distributions for monoatomic nanowires of Ag and Au. (a) Nanowire EDOS show more complicated behavior than their bulk counterparts. Similarly, the generated hot carrier distributions upon excitation by (b) 1.5 μm, (c) 700 nm, and (d) 400 nm illumination show multiple peaks instead of a more uniform distribution or a single peak, as is found in the bulk. Generally, nanoscale confined metals have different hot carrier distributions, and specific designs should be considered for different applications.
Fig. 7
Fig. 7 EDOS and hot carrier distributions for CNT and graphene. (a) EDOS are nearly symmetric for both materials and have distinctive narrow peaks. Hot carrier energy distribution upon excitation by (b) 1.5 μm, (c) 700 nm, and (d) 500 nm illumination show narrow peaks, which are favorable for hot carrier injection. We note that the EDOS of CNT and graphene are extremely sensitive to changes in geometry, dimensions, doping, etc., which add additional flexibility to tuning the EDOS profile.
Fig. 8
Fig. 8 Hot carrier distributions for different materials under AM1.5G illumination. In (a), (b) and (c), hot holes distributions are weighted further from the Fermi level, indicating suitability for hot hole extraction. In (d) and (e), comparable distributions for both carriers are found. In (f) and (g), hot electrons are slightly preferred due to an overall larger fraction of excited electrons further from the Fermi level.

Tables (1)

Tables Icon

Table 1 Summary of expected hot carrier collection efficiencies for electrons and holes under illumination (400 nm, 700 nm, or 1.5 μm) for the materials considered in this manuscript. Checkmarks suggest, as a rough guide, that a particular carrier type is preferred for collection. If both electrons and holes have a checkmark, both carrier types are expected to be collected. The actual collection efficiencies will also depend upon the interface barrier height, which depends on the details of the device under consideration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( E ) D ( E E p h ) f ( E E p h ) D ( E ) ( 1 f ( E ) )

Metrics