Abstract

Absorption of hydrogen gas (H2) in contact with palladium (Pd) makes Pd a material of choice for numerous H2 sensors. In this paper, we present the fabrication of optical fibers with embedded Pd particles in the silica cladding of the fibers. Fiber preforms prepared with a powder mixture of silica and palladium oxide (PdO) are heat-treated under specific conditions to reduce PdO to metallic Pd particles, dispersed in the silica matrix. Optical fibers with different topologies have been fabricated with lengths of several hundred meters and PdO concentration ranging from 0.01% to 5% mol (in addition to silica). Oxidation state, homogeneity, shape and size distribution of the particles embedded in the cladding of the preform and the fiber samples are studied with structural and micro-structural characterizations. Optical properties of the fibers are finally studied for evaluating the potential of this proof-of-concept work.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas
Appl. Opt. 54(35) 10342-10348 (2015)

Strategy and method for nanoporous cladding formation on silica optical fiber

Hui Chen, Fei Tian, Kai Liu, Jiri Kanka, and Henry Du
Opt. Lett. 41(12) 2831-2834 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fiber sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
    [Crossref]
  2. X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
    [Crossref] [PubMed]
  3. M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166–167, 632–636 (2012).
    [Crossref]
  4. J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
    [Crossref]
  5. M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
    [Crossref]
  6. D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
    [Crossref]
  7. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1–2), 158–163 (1999).
    [Crossref]
  8. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [Crossref] [PubMed]
  9. L. Goddard, K. Y. Wong, A. Garg, E. Behymer, G. Cole, and T. Bond, “Measurements of the complex refractive index of Pd and Pt films in air and upon adsorption of H2 gas,” IEEE Lasers and Electro-Optics Society(LEOS) 569–570 (2008).
  10. F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, and V. Mattoli, “Micro-wrinckled palladium surface for hydrogen sensing and switched detection of lower flammability limit,” Int. J. Hydrogen Energy 37(22), 17529–17539 (2012).
    [Crossref]
  11. S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
    [Crossref]
  12. S. Leparmentier, J.L. Auguste, G. Humbert, G. Delaizir, S. Delepine-Lesoille, J. Bertrand, S. Buschaert, J. Périsse and J.R. Macé, “Palladium particles embedded into silica optical fibers for hydrogen gas detection,” Conference Photonics Europe 2014, Brussels, Proceeding of SPIE 9128, Paper 91280H (2014).
  13. S. Leparmentier, J.L. Auguste, G. Humbert, G. Pilorget, L. Lablonde, S. Delepine-Lesoille, “Study of the hydrogen influence on the acoustic velocity of single-mode fibers by Rayleigh and Brillouin backscattering measurements” to be presented at OFS’24 conference, Brazil, September 2015.
  14. J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
    [Crossref]
  15. C. B. Alcock, Thermochemical Processes: Principles and Models: Principles and Models (Butterworth-Heinemann, 2000) Part 1, Section 4, p. 139.

2014 (1)

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

2012 (4)

F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, and V. Mattoli, “Micro-wrinckled palladium surface for hydrogen sensing and switched detection of lower flammability limit,” Int. J. Hydrogen Energy 37(22), 17529–17539 (2012).
[Crossref]

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166–167, 632–636 (2012).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

2009 (1)

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

2005 (1)

2000 (1)

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fiber sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[Crossref]

1999 (1)

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1–2), 158–163 (1999).
[Crossref]

1996 (1)

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

1984 (1)

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

Auguste, J. L.

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Bertrand, J.

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Bevenot, X.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fiber sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[Crossref]

Boukenter, A.

Brichard, B.

Butler, M. A.

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

Clement, M.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fiber sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[Crossref]

Dai, J.

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166–167, 632–636 (2012).
[Crossref]

Dario, P.

F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, and V. Mattoli, “Micro-wrinckled palladium surface for hydrogen sensing and switched detection of lower flammability limit,” Int. J. Hydrogen Energy 37(22), 17529–17539 (2012).
[Crossref]

De Groot, D. G.

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

Dekker, J. P.

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

Delaizir, G.

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Delepine-Lesoille, S.

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Gagnaire, H.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fiber sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[Crossref]

Girard, S.

Greco, F.

F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, and V. Mattoli, “Micro-wrinckled palladium surface for hydrogen sensing and switched detection of lower flammability limit,” Int. J. Hydrogen Energy 37(22), 17529–17539 (2012).
[Crossref]

Griessen, R.

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

Huiberts, J. N.

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

Humbert, G.

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Kazemi, A.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1–2), 158–163 (1999).
[Crossref]

Koeman, N. J.

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

Kudinova, M.

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Lablonde, L.

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

Leparmentier, S.

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Litzkendorf, D.

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Luna-Moreno, D.

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

Martin, P. O.

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Martinez-Escobar, D.

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

Mattoli, V.

F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, and V. Mattoli, “Micro-wrinckled palladium surface for hydrogen sensing and switched detection of lower flammability limit,” Int. J. Hydrogen Energy 37(22), 17529–17539 (2012).
[Crossref]

Mazzolai, B.

F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, and V. Mattoli, “Micro-wrinckled palladium surface for hydrogen sensing and switched detection of lower flammability limit,” Int. J. Hydrogen Energy 37(22), 17529–17539 (2012).
[Crossref]

Monzon-Hernandez, D.

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

Monzón-Hernández, D.

Ouerdane, Y.

Petrick, R.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1–2), 158–163 (1999).
[Crossref]

Phéron, X.

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Rector, J. H.

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

Schuster, K.

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Sutapun, B.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1–2), 158–163 (1999).
[Crossref]

Tabib-Azar, M.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1–2), 158–163 (1999).
[Crossref]

Trouillet, A.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fiber sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[Crossref]

Veillas, C.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fiber sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[Crossref]

Ventrelli, L.

F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, and V. Mattoli, “Micro-wrinckled palladium surface for hydrogen sensing and switched detection of lower flammability limit,” Int. J. Hydrogen Energy 37(22), 17529–17539 (2012).
[Crossref]

Villatoro, J.

Wijngaarden, R. J.

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

Yang, M.

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166–167, 632–636 (2012).
[Crossref]

Yang, Z.

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166–167, 632–636 (2012).
[Crossref]

Zhang, D.

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166–167, 632–636 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

Int. J. Hydrogen Energy (1)

F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, and V. Mattoli, “Micro-wrinckled palladium surface for hydrogen sensing and switched detection of lower flammability limit,” Int. J. Hydrogen Energy 37(22), 17529–17539 (2012).
[Crossref]

Materials (Basel) (1)

J. L. Auguste, G. Humbert, S. Leparmentier, M. Kudinova, P. O. Martin, G. Delaizir, K. Schuster, and D. Litzkendorf, “Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers,” Materials (Basel) 7(8), 6045–6063 (2014).
[Crossref]

Nature (1)

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, and N. J. Koeman, “Yttrium and lanthanum hybride films with switchable optical properties,” Nature 380(6571), 231–234 (1996).
[Crossref]

Opt. Express (2)

Sens. Actuators B Chem. (4)

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1–2), 158–163 (1999).
[Crossref]

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166–167, 632–636 (2012).
[Crossref]

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fiber sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[Crossref]

Other (4)

L. Goddard, K. Y. Wong, A. Garg, E. Behymer, G. Cole, and T. Bond, “Measurements of the complex refractive index of Pd and Pt films in air and upon adsorption of H2 gas,” IEEE Lasers and Electro-Optics Society(LEOS) 569–570 (2008).

C. B. Alcock, Thermochemical Processes: Principles and Models: Principles and Models (Butterworth-Heinemann, 2000) Part 1, Section 4, p. 139.

S. Leparmentier, J.L. Auguste, G. Humbert, G. Delaizir, S. Delepine-Lesoille, J. Bertrand, S. Buschaert, J. Périsse and J.R. Macé, “Palladium particles embedded into silica optical fibers for hydrogen gas detection,” Conference Photonics Europe 2014, Brussels, Proceeding of SPIE 9128, Paper 91280H (2014).

S. Leparmentier, J.L. Auguste, G. Humbert, G. Pilorget, L. Lablonde, S. Delepine-Lesoille, “Study of the hydrogen influence on the acoustic velocity of single-mode fibers by Rayleigh and Brillouin backscattering measurements” to be presented at OFS’24 conference, Brazil, September 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustration of the MPIT based process developed for fabricating preforms with Pd particles embedded into the cladding material.
Fig. 2
Fig. 2 Calculated Ellingham diagram of the PdO/Pd redox couple [15].
Fig. 3
Fig. 3 SEM (in the backscattered configuration) photographs of cross-sections of three optical fibers with Pd particles embedded into the silica cladding fabricated by the MPIT process. (a) a SiO2-GeO2 core step index fiber, (b) a pure silica core microstructured fiber, (c) a SiO2-GeO2 step index core with a microstructured cladding fiber and (d) zoom-in photograph of the cladding region of the fiber shown in (c).
Fig. 4
Fig. 4 Elemental analyses of a preform portion after the heat-treatment. (a) SEM photograph (in the backscattered configuration), (b) SEM-EDS elemental analysis and (c) SEM-EDS mapping of Pd and Si individual elements (detection of the L and K lines, respectively).
Fig. 5
Fig. 5 Comparison of XRD diagrams of palladium-based fiber and untreated and heat-treated preform samples (the large diffraction peak centered to 2θ ~22° is due to the silica amorphous network and is typical to glass structures).
Fig. 6
Fig. 6 Comparison of SEM pictures of fibers from the same batch, taken at different locations of the drawing processing of the fiber presented in Fig. 3(c).
Fig. 7
Fig. 7 SEM photographs of (a) the fiber cross section and (b) longitudinal section of the fiber, polished until the core.
Fig. 8
Fig. 8 (a). Transmission spectra of the light source transmitted through different lengths of the fiber (shown in Fig. 3(c)), with the same launching conditions, and (b) Intensity distribution (two dimensional pattern and profile) at the fiber output of the propagated light (filtered around 1.55 µm).

Metrics