Abstract

The nanofiber morphology of regioregular Poly-3-hexylthiophene (P3HT) is a 1D crystalline structure organized by ππ stacking of the backbone chains. In this study, we report the impact of electric field on the orientation and optical properties of P3HT nanofibers dispersed in liquid solution. We demonstrate that alternating electric field aligns nanofibers, whereas static electric field forces them to migrate towards the cathode. The alignment of nanofibers introduces anisotropic optical properties, which can be dynamically manipulated until the solvent has evaporated. Time resolved spectroscopic measurements revealed that the electro-optical response time decreases significantly with the magnitude of applied electric field. Thus, for electric field 1.3 Vμm1 the response time was measured as low as 20 ms, while for 0.65 Vμm1 it was 110-150 ms. Observed phenomenon is the first mention of P3HT supramolecules associated with electro-optical effect. Proposed method provides real time control over the orientation of nanofibers, which is a starting point for a novel practical implementation. With further development P3HT nanofibers can be used individually as an anisotropic solution or as an active component in a guest-host system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct birefringence and transmission modulation via dynamic alignment of P3HT nanofibers in an advanced opto-fluidic component

Gleb S. Lobov, Aleksandrs Marinins, Sebastián Etcheverry, Yichen Zhao, Elena Vasileva, Abhilash Sugunan, Fredrik Laurell, Lars Thylén, Lech Wosinski, Mikael Östling, Muhammet S. Toprak, and Sergei Popov
Opt. Mater. Express 7(1) 52-61 (2017)

Electro-optical effects of high aspect ratio P3HT nanofibers colloid in polymer micro-fluid cells

G. S. Lobov, A. Marinins, R. Zandi Shafagh, Y. Zhao, W. van der Wijngaart, L. Wosinski, L. Thylen, M. S. Toprak, T. Haraldsson, M. Östling, and S. Popov
Opt. Lett. 42(11) 2157-2160 (2017)

Electric-field-induced optical path length change in LiNbO3:MgO crystals: spatial anisotropy analysis

Anatoliy S. Andrushchak, Oleh V. Yurkevych, Bogdan M. Strychalyuk, Mykhailo M. Klymash, Andrzej Rusek, and Andriy V. Kityk
Appl. Opt. 52(16) 3757-3763 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Tremel and S. Ludwigs, “Morphology of P3HT in thin films in relation to optical and electrical properties,” Adv. Polym. Sci. 265, 39–82 (2014).
    [Crossref]
  2. U. Bielecka, K. Janus, and W. Bartkowiak, “Nanoaggregation of P3HT in chloroform-anisole solution: relationship between morphology and electrical properties,” Proc. SPIE 9185, 9185 (2014).
  3. Z. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
    [Crossref]
  4. S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
    [Crossref]
  5. Z. Zhu, B. Wei, and J. Wang, “Self-assembly of poly(3-hexylthiophene) nanowire networks by a mixed-solvent approach for organic field-effect transistors,” Phys. Status Solidi Rapid Res. Lett. 8(3), 252–255 (2014).
    [Crossref]
  6. S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
    [Crossref]
  7. C. E. Johnson and D. S. Boucher, “Poly(3-hexylthiophene) aggregate formation in binary solvent mixtures: An excitonic coupling analysis,” J. Polym. Sci. Pol. Phys. 52(7), 526–538 (2014).
    [Crossref]
  8. A. Kumar, W. Takashima, K. Kaneto, and R. Prakash, “Nano-dimensional self assembly of regioregular poly (3-hexylthiophene) in toluene: Structural, optical, and morphological properties,” J. Appl. Polym. Sci. 131(20), 40931 (2014).
    [Crossref]
  9. C. A. Otálora, A. F. Loaiza, and G. Gordillo, “Influence of Solvent on the Molecular Ordering of Thin Films of P3HT: PCBM Blends and Precursor Solution,” IEEE 40th Photovoltaic Specialist Conference, 1754–1757 (2014).
  10. E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
    [Crossref] [PubMed]
  11. F. S. U. Fischer, K. Tremel, M. Sommer, E. J. C. Crossland, and S. Ludwigs, “Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields,” Nanoscale 4(6), 2138–2144 (2012).
    [Crossref] [PubMed]
  12. W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
    [Crossref] [PubMed]
  13. M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, and N. Kayunkid, “Orienting Semi-Conducting π-Conjugated Polymers,” Macromol. Rapid Commun. 35(1), 9–26 (2014).
    [Crossref] [PubMed]
  14. K. Kumari, S. Chand, V. D. Vankar, and V. Kumar, “Enhancement in hole current density on polarization in poly(3-hexylthiophene):cadmium selenide quantum dot nanocomposite thin films,” Appl. Phys. Lett. 94(21), 213503 (2009).
    [Crossref]
  15. A. Bagui and S. S. K. Iyer, “Increase in hole mobility in poly (3-hexylthiophene-2,5-diyl) films annealed under electric field during the solvent drying step,” Org. Electron. 15(7), 1387–1395 (2014).
    [Crossref]
  16. C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
    [Crossref]
  17. L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
    [Crossref]
  18. L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
    [Crossref] [PubMed]
  19. M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, and W. Hu, “Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics,” J. Vac. Sci. Technol. B 28(6), 63–67 (2010).
    [Crossref]
  20. M. Brinkmann and P. Rannou, “Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification,” Adv. Funct. Mater. 17(1), 101–108 (2007).
    [Crossref]
  21. Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
    [Crossref]
  22. M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, and P. H. J. Schenning, “Field effect transistors based on poly(3-hexylthiophene) at different length scales,” Nanotechnology 15(4), S265–S269 (2004).
    [Crossref]
  23. S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, and G. Redmond, “Alignment and dynamic manipulation of conjugated polymer nanowires in nematic liquid crystal hosts,” Adv. Mater. 20(13), 2497–2502 (2008).
    [Crossref]
  24. D. Iacopino and G. Redmond, “Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers,” Nanotechnology 25(43), 435607 (2014).
    [Crossref] [PubMed]
  25. L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
    [Crossref]
  26. M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
    [Crossref]

2015 (1)

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

2014 (10)

M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, and N. Kayunkid, “Orienting Semi-Conducting π-Conjugated Polymers,” Macromol. Rapid Commun. 35(1), 9–26 (2014).
[Crossref] [PubMed]

A. Bagui and S. S. K. Iyer, “Increase in hole mobility in poly (3-hexylthiophene-2,5-diyl) films annealed under electric field during the solvent drying step,” Org. Electron. 15(7), 1387–1395 (2014).
[Crossref]

K. Tremel and S. Ludwigs, “Morphology of P3HT in thin films in relation to optical and electrical properties,” Adv. Polym. Sci. 265, 39–82 (2014).
[Crossref]

U. Bielecka, K. Janus, and W. Bartkowiak, “Nanoaggregation of P3HT in chloroform-anisole solution: relationship between morphology and electrical properties,” Proc. SPIE 9185, 9185 (2014).

Z. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

Z. Zhu, B. Wei, and J. Wang, “Self-assembly of poly(3-hexylthiophene) nanowire networks by a mixed-solvent approach for organic field-effect transistors,” Phys. Status Solidi Rapid Res. Lett. 8(3), 252–255 (2014).
[Crossref]

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

C. E. Johnson and D. S. Boucher, “Poly(3-hexylthiophene) aggregate formation in binary solvent mixtures: An excitonic coupling analysis,” J. Polym. Sci. Pol. Phys. 52(7), 526–538 (2014).
[Crossref]

A. Kumar, W. Takashima, K. Kaneto, and R. Prakash, “Nano-dimensional self assembly of regioregular poly (3-hexylthiophene) in toluene: Structural, optical, and morphological properties,” J. Appl. Polym. Sci. 131(20), 40931 (2014).
[Crossref]

D. Iacopino and G. Redmond, “Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers,” Nanotechnology 25(43), 435607 (2014).
[Crossref] [PubMed]

2012 (4)

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

F. S. U. Fischer, K. Tremel, M. Sommer, E. J. C. Crossland, and S. Ludwigs, “Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields,” Nanoscale 4(6), 2138–2144 (2012).
[Crossref] [PubMed]

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
[Crossref]

2011 (2)

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

2010 (1)

M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, and W. Hu, “Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics,” J. Vac. Sci. Technol. B 28(6), 63–67 (2010).
[Crossref]

2009 (2)

K. Kumari, S. Chand, V. D. Vankar, and V. Kumar, “Enhancement in hole current density on polarization in poly(3-hexylthiophene):cadmium selenide quantum dot nanocomposite thin films,” Appl. Phys. Lett. 94(21), 213503 (2009).
[Crossref]

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

2008 (1)

S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, and G. Redmond, “Alignment and dynamic manipulation of conjugated polymer nanowires in nematic liquid crystal hosts,” Adv. Mater. 20(13), 2497–2502 (2008).
[Crossref]

2007 (1)

M. Brinkmann and P. Rannou, “Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification,” Adv. Funct. Mater. 17(1), 101–108 (2007).
[Crossref]

2006 (1)

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

2004 (1)

M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, and P. H. J. Schenning, “Field effect transistors based on poly(3-hexylthiophene) at different length scales,” Nanotechnology 15(4), S265–S269 (2004).
[Crossref]

2003 (1)

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Aryal, M.

M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, and W. Hu, “Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics,” J. Vac. Sci. Technol. B 28(6), 63–67 (2010).
[Crossref]

Bagui, A.

A. Bagui and S. S. K. Iyer, “Increase in hole mobility in poly (3-hexylthiophene-2,5-diyl) films annealed under electric field during the solvent drying step,” Org. Electron. 15(7), 1387–1395 (2014).
[Crossref]

Balasubramanian, S. K.

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

Bartkowiak, W.

U. Bielecka, K. Janus, and W. Bartkowiak, “Nanoaggregation of P3HT in chloroform-anisole solution: relationship between morphology and electrical properties,” Proc. SPIE 9185, 9185 (2014).

Bielecka, U.

U. Bielecka, K. Janus, and W. Bartkowiak, “Nanoaggregation of P3HT in chloroform-anisole solution: relationship between morphology and electrical properties,” Proc. SPIE 9185, 9185 (2014).

Biniek, L.

M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, and N. Kayunkid, “Orienting Semi-Conducting π-Conjugated Polymers,” Macromol. Rapid Commun. 35(1), 9–26 (2014).
[Crossref] [PubMed]

Bolsée, J.-C.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

Boucher, D. S.

C. E. Johnson and D. S. Boucher, “Poly(3-hexylthiophene) aggregate formation in binary solvent mixtures: An excitonic coupling analysis,” J. Polym. Sci. Pol. Phys. 52(7), 526–538 (2014).
[Crossref]

Boyen, H.-G.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

Brinkmann, M.

M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, and N. Kayunkid, “Orienting Semi-Conducting π-Conjugated Polymers,” Macromol. Rapid Commun. 35(1), 9–26 (2014).
[Crossref] [PubMed]

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

M. Brinkmann and P. Rannou, “Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification,” Adv. Funct. Mater. 17(1), 101–108 (2007).
[Crossref]

Cacialli, F.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Cardinaletti, I.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

Chand, S.

K. Kumari, S. Chand, V. D. Vankar, and V. Kumar, “Enhancement in hole current density on polarization in poly(3-hexylthiophene):cadmium selenide quantum dot nanocomposite thin films,” Appl. Phys. Lett. 94(21), 213503 (2009).
[Crossref]

Chandezon, F.

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Chen, C.-W.

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

Chen, H.-L.

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

Chen, Z. K.

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

Chuang, S.-Y.

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

Credgington, D.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Crossland, E.

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

Crossland, E. J. C.

F. S. U. Fischer, K. Tremel, M. Sommer, E. J. C. Crossland, and S. Ludwigs, “Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields,” Nanoscale 4(6), 2138–2144 (2012).
[Crossref] [PubMed]

Crossland, E. J. W.

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

D’Haen, J.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

de Loos, M.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Den Boer, D.

M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, and P. H. J. Schenning, “Field effect transistors based on poly(3-hexylthiophene) at different length scales,” Nanotechnology 15(4), S265–S269 (2004).
[Crossref]

Deng, L.

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

Devaux, E.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Dierckx, W.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

Djurado, D.

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Doyle, S.

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Durkut, M.

M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, and P. H. J. Schenning, “Field effect transistors based on poly(3-hexylthiophene) at different length scales,” Nanotechnology 15(4), S265–S269 (2004).
[Crossref]

Ersen, O.

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Fiore, A.

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Fischer, F.

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

Fischer, F. S. U.

F. S. U. Fischer, K. Tremel, M. Sommer, E. J. C. Crossland, and S. Ludwigs, “Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields,” Nanoscale 4(6), 2138–2144 (2012).
[Crossref] [PubMed]

Hadley, P.

M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, and P. H. J. Schenning, “Field effect transistors based on poly(3-hexylthiophene) at different length scales,” Nanotechnology 15(4), S265–S269 (2004).
[Crossref]

Hartmann, L.

M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, and N. Kayunkid, “Orienting Semi-Conducting π-Conjugated Polymers,” Macromol. Rapid Commun. 35(1), 9–26 (2014).
[Crossref] [PubMed]

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

Hu, W.

M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, and W. Hu, “Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics,” J. Vac. Sci. Technol. B 28(6), 63–67 (2010).
[Crossref]

Huang, Y.-C.

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

Iacopino, D.

D. Iacopino and G. Redmond, “Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers,” Nanotechnology 25(43), 435607 (2014).
[Crossref] [PubMed]

S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, and G. Redmond, “Alignment and dynamic manipulation of conjugated polymer nanowires in nematic liquid crystal hosts,” Adv. Mater. 20(13), 2497–2502 (2008).
[Crossref]

Iyer, S. S. K.

A. Bagui and S. S. K. Iyer, “Increase in hole mobility in poly (3-hexylthiophene-2,5-diyl) films annealed under electric field during the solvent drying step,” Org. Electron. 15(7), 1387–1395 (2014).
[Crossref]

Janus, K.

U. Bielecka, K. Janus, and W. Bartkowiak, “Nanoaggregation of P3HT in chloroform-anisole solution: relationship between morphology and electrical properties,” Proc. SPIE 9185, 9185 (2014).

Jen, W.-M.

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

Johnson, C. E.

C. E. Johnson and D. S. Boucher, “Poly(3-hexylthiophene) aggregate formation in binary solvent mixtures: An excitonic coupling analysis,” J. Polym. Sci. Pol. Phys. 52(7), 526–538 (2014).
[Crossref]

Kaneto, K.

A. Kumar, W. Takashima, K. Kaneto, and R. Prakash, “Nano-dimensional self assembly of regioregular poly (3-hexylthiophene) in toluene: Structural, optical, and morphological properties,” J. Appl. Polym. Sci. 131(20), 40931 (2014).
[Crossref]

Kayunkid, N.

M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, and N. Kayunkid, “Orienting Semi-Conducting π-Conjugated Polymers,” Macromol. Rapid Commun. 35(1), 9–26 (2014).
[Crossref] [PubMed]

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

Kim, T. H.

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Kim, T. Y.

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Kumar, A.

A. Kumar, W. Takashima, K. Kaneto, and R. Prakash, “Nano-dimensional self assembly of regioregular poly (3-hexylthiophene) in toluene: Structural, optical, and morphological properties,” J. Appl. Polym. Sci. 131(20), 40931 (2014).
[Crossref]

Kumar, V.

K. Kumari, S. Chand, V. D. Vankar, and V. Kumar, “Enhancement in hole current density on polarization in poly(3-hexylthiophene):cadmium selenide quantum dot nanocomposite thin films,” Appl. Phys. Lett. 94(21), 213503 (2009).
[Crossref]

Kumari, K.

K. Kumari, S. Chand, V. D. Vankar, and V. Kumar, “Enhancement in hole current density on polarization in poly(3-hexylthiophene):cadmium selenide quantum dot nanocomposite thin films,” Appl. Phys. Lett. 94(21), 213503 (2009).
[Crossref]

Lee, S. H.

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Lee, W.-H.

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

Legrand, J.-F.

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Lovera, P.

S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, and G. Redmond, “Alignment and dynamic manipulation of conjugated polymer nanowires in nematic liquid crystal hosts,” Adv. Mater. 20(13), 2497–2502 (2008).
[Crossref]

Ludwigs, S.

K. Tremel and S. Ludwigs, “Morphology of P3HT in thin films in relation to optical and electrical properties,” Adv. Polym. Sci. 265, 39–82 (2014).
[Crossref]

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

F. S. U. Fischer, K. Tremel, M. Sommer, E. J. C. Crossland, and S. Ludwigs, “Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields,” Nanoscale 4(6), 2138–2144 (2012).
[Crossref] [PubMed]

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

Maes, W.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

Manca, J.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

Marletta, G.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Mas-Torrent, M.

M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, and P. H. J. Schenning, “Field effect transistors based on poly(3-hexylthiophene) at different length scales,” Nanotechnology 15(4), S265–S269 (2004).
[Crossref]

Mielczarek, K.

M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, and W. Hu, “Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics,” J. Vac. Sci. Technol. B 28(6), 63–67 (2010).
[Crossref]

Miyajima, S.

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

Moynihan, S.

S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, and G. Redmond, “Alignment and dynamic manipulation of conjugated polymer nanowires in nematic liquid crystal hosts,” Adv. Mater. 20(13), 2497–2502 (2008).
[Crossref]

Muhammed, M.

Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
[Crossref]

Nagamatsu, S.

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

Nahm, K. S.

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Nesladek, M.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

O’Carroll, D.

S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, and G. Redmond, “Alignment and dynamic manipulation of conjugated polymer nanowires in nematic liquid crystal hosts,” Adv. Mater. 20(13), 2497–2502 (2008).
[Crossref]

Ong, B. S.

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

Oosterbaan, W. D.

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

Palermo, V.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Pandey, S. S.

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

Prakash, R.

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

A. Kumar, W. Takashima, K. Kaneto, and R. Prakash, “Nano-dimensional self assembly of regioregular poly (3-hexylthiophene) in toluene: Structural, optical, and morphological properties,” J. Appl. Polym. Sci. 131(20), 40931 (2014).
[Crossref]

Rahimi, K.

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

Rannou, P.

M. Brinkmann and P. Rannou, “Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification,” Adv. Funct. Mater. 17(1), 101–108 (2007).
[Crossref]

Redmond, G.

D. Iacopino and G. Redmond, “Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers,” Nanotechnology 25(43), 435607 (2014).
[Crossref] [PubMed]

S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, and G. Redmond, “Alignment and dynamic manipulation of conjugated polymer nanowires in nematic liquid crystal hosts,” Adv. Mater. 20(13), 2497–2502 (2008).
[Crossref]

Reiss, P.

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Reiter, G.

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

Rihtnesberg, D. B.

Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
[Crossref]

Roiban, L.

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Samorì, P.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Sardone, L.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Schenning, P. H. J.

M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, and P. H. J. Schenning, “Field effect transistors based on poly(3-hexylthiophene) at different length scales,” Nanotechnology 15(4), S265–S269 (2004).
[Crossref]

Senthil Kumar, M.

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Sommer, M.

F. S. U. Fischer, K. Tremel, M. Sommer, E. J. C. Crossland, and S. Ludwigs, “Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields,” Nanoscale 4(6), 2138–2144 (2012).
[Crossref] [PubMed]

Song, S. M.

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Steiner, U.

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

Su, W.-F.

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

Sugunan, A.

Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
[Crossref]

Suh, E. K.

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Takashima, W.

A. Kumar, W. Takashima, K. Kaneto, and R. Prakash, “Nano-dimensional self assembly of regioregular poly (3-hexylthiophene) in toluene: Structural, optical, and morphological properties,” J. Appl. Polym. Sci. 131(20), 40931 (2014).
[Crossref]

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

Tiwari, S.

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

Toprak, M. S.

Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
[Crossref]

Tremel, K.

K. Tremel and S. Ludwigs, “Morphology of P3HT in thin films in relation to optical and electrical properties,” Adv. Polym. Sci. 265, 39–82 (2014).
[Crossref]

M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, and N. Kayunkid, “Orienting Semi-Conducting π-Conjugated Polymers,” Macromol. Rapid Commun. 35(1), 9–26 (2014).
[Crossref] [PubMed]

F. S. U. Fischer, K. Tremel, M. Sommer, E. J. C. Crossland, and S. Ludwigs, “Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields,” Nanoscale 4(6), 2138–2144 (2012).
[Crossref] [PubMed]

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

Uttiya, S.

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

van Esch, J.

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

Vankar, V. D.

K. Kumari, S. Chand, V. D. Vankar, and V. Kumar, “Enhancement in hole current density on polarization in poly(3-hexylthiophene):cadmium selenide quantum dot nanocomposite thin films,” Appl. Phys. Lett. 94(21), 213503 (2009).
[Crossref]

Vergnat, C.

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

Wang, J.

Z. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

Z. Zhu, B. Wei, and J. Wang, “Self-assembly of poly(3-hexylthiophene) nanowire networks by a mixed-solvent approach for organic field-effect transistors,” Phys. Status Solidi Rapid Res. Lett. 8(3), 252–255 (2014).
[Crossref]

Wang, K.

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

Wang, Q.

Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
[Crossref]

Wang, X.

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

Wei, B.

Z. Zhu, B. Wei, and J. Wang, “Self-assembly of poly(3-hexylthiophene) nanowire networks by a mixed-solvent approach for organic field-effect transistors,” Phys. Status Solidi Rapid Res. Lett. 8(3), 252–255 (2014).
[Crossref]

Z. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

Xu, G.

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

Yang, J. W.

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Zakhidov, A.

M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, and W. Hu, “Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics,” J. Vac. Sci. Technol. B 28(6), 63–67 (2010).
[Crossref]

Zeng, W.

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

Zhao, C. X.

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

Zhao, Y.

Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
[Crossref]

Zhou, M.

M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, and W. Hu, “Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics,” J. Vac. Sci. Technol. B 28(6), 63–67 (2010).
[Crossref]

Zhu, Z.

Z. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

Z. Zhu, B. Wei, and J. Wang, “Self-assembly of poly(3-hexylthiophene) nanowire networks by a mixed-solvent approach for organic field-effect transistors,” Phys. Status Solidi Rapid Res. Lett. 8(3), 252–255 (2014).
[Crossref]

Adv. Funct. Mater. (2)

L. Hartmann, K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, “2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy,” Adv. Funct. Mater. 21(21), 4047–4057 (2011).
[Crossref]

M. Brinkmann and P. Rannou, “Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification,” Adv. Funct. Mater. 17(1), 101–108 (2007).
[Crossref]

Adv. Mater. (3)

S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, and G. Redmond, “Alignment and dynamic manipulation of conjugated polymer nanowires in nematic liquid crystal hosts,” Adv. Mater. 20(13), 2497–2502 (2008).
[Crossref]

L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, and P. Samorì, “Electric-field-assisted alignment of supramolecular fibers,” Adv. Mater. 18(10), 1276–1280 (2006).
[Crossref]

E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, “Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films,” Adv. Mater. 24(6), 839–844 (2012).
[Crossref] [PubMed]

Adv. Polym. Sci. (1)

K. Tremel and S. Ludwigs, “Morphology of P3HT in thin films in relation to optical and electrical properties,” Adv. Polym. Sci. 265, 39–82 (2014).
[Crossref]

Appl. Phys. Lett. (2)

K. Kumari, S. Chand, V. D. Vankar, and V. Kumar, “Enhancement in hole current density on polarization in poly(3-hexylthiophene):cadmium selenide quantum dot nanocomposite thin films,” Appl. Phys. Lett. 94(21), 213503 (2009).
[Crossref]

C. X. Zhao, X. Wang, W. Zeng, Z. K. Chen, B. S. Ong, K. Wang, L. Deng, and G. Xu, “Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication,” Appl. Phys. Lett. 99(5), 053305 (2011).
[Crossref]

J. Appl. Polym. Sci. (1)

A. Kumar, W. Takashima, K. Kaneto, and R. Prakash, “Nano-dimensional self assembly of regioregular poly (3-hexylthiophene) in toluene: Structural, optical, and morphological properties,” J. Appl. Polym. Sci. 131(20), 40931 (2014).
[Crossref]

J. Mater. Chem. (1)

S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem. 19(31), 5554 (2009).
[Crossref]

J. Polym. Sci. Pol. Phys. (1)

C. E. Johnson and D. S. Boucher, “Poly(3-hexylthiophene) aggregate formation in binary solvent mixtures: An excitonic coupling analysis,” J. Polym. Sci. Pol. Phys. 52(7), 526–538 (2014).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, and W. Hu, “Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics,” J. Vac. Sci. Technol. B 28(6), 63–67 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Tiwari, W. Takashima, S. K. Balasubramanian, S. Miyajima, S. Nagamatsu, S. S. Pandey, and R. Prakash, “P3HT-fiber-based field-effect transistor: Effects of nanostructure and annealing temperature,” Jpn. J. Appl. Phys. 53(2), 021601 (2014).
[Crossref]

Macromol. Rapid Commun. (1)

M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, and N. Kayunkid, “Orienting Semi-Conducting π-Conjugated Polymers,” Macromol. Rapid Commun. 35(1), 9–26 (2014).
[Crossref] [PubMed]

Nanoscale (2)

F. S. U. Fischer, K. Tremel, M. Sommer, E. J. C. Crossland, and S. Ludwigs, “Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields,” Nanoscale 4(6), 2138–2144 (2012).
[Crossref] [PubMed]

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, and O. Ersen, “Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization,” Nanoscale 4(22), 7212–7220 (2012).
[Crossref] [PubMed]

Nanotechnology (3)

W. Dierckx, W. D. Oosterbaan, J.-C. Bolsée, I. Cardinaletti, W. Maes, H.-G. Boyen, J. D’Haen, M. Nesladek, and J. Manca, “Organic phototransistors using poly(3-hexylthiophene) nanofibres,” Nanotechnology 26(6), 065201 (2015).
[Crossref] [PubMed]

D. Iacopino and G. Redmond, “Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers,” Nanotechnology 25(43), 435607 (2014).
[Crossref] [PubMed]

M. Mas-Torrent, D. Den Boer, M. Durkut, P. Hadley, and P. H. J. Schenning, “Field effect transistors based on poly(3-hexylthiophene) at different length scales,” Nanotechnology 15(4), S265–S269 (2004).
[Crossref]

Org. Electron. (1)

A. Bagui and S. S. K. Iyer, “Increase in hole mobility in poly (3-hexylthiophene-2,5-diyl) films annealed under electric field during the solvent drying step,” Org. Electron. 15(7), 1387–1395 (2014).
[Crossref]

Phys. Status Solidi Rapid Res. Lett. (1)

Z. Zhu, B. Wei, and J. Wang, “Self-assembly of poly(3-hexylthiophene) nanowire networks by a mixed-solvent approach for organic field-effect transistors,” Phys. Status Solidi Rapid Res. Lett. 8(3), 252–255 (2014).
[Crossref]

Phys. Status Solidi, C Conf. Crit. Rev. (1)

Y. Zhao, A. Sugunan, D. B. Rihtnesberg, Q. Wang, M. S. Toprak, and M. Muhammed, “Size-tuneable synthesis of photoconducting poly-(3-hexylthiophene) nanofibres and nanocomposites,” Phys. Status Solidi, C Conf. Crit. Rev. 9(7), 1546–1550 (2012).
[Crossref]

Physica E (1)

Z. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

Proc. SPIE (1)

U. Bielecka, K. Janus, and W. Bartkowiak, “Nanoaggregation of P3HT in chloroform-anisole solution: relationship between morphology and electrical properties,” Proc. SPIE 9185, 9185 (2014).

Solid-State Electron. (1)

M. Senthil Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, “DC electric field assisted alignment of carbon nanotubes on metal electrodes,” Solid-State Electron. 47(11), 2075–2080 (2003).
[Crossref]

Other (1)

C. A. Otálora, A. F. Loaiza, and G. Gordillo, “Influence of Solvent on the Molecular Ordering of Thin Films of P3HT: PCBM Blends and Precursor Solution,” IEEE 40th Photovoltaic Specialist Conference, 1754–1757 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic structure of the poling device. V – voltage, EL – printed silver electrodes, GS – glass substrate, D – sample droplet, L – spacing between the electrodes, NF – nanofibers.
Fig. 2
Fig. 2 SEM image of a) unpoled and b) AC poled nanofibers on the substrate between the electrodes | E | vector points the direction of the poling field.
Fig. 3
Fig. 3 Absorption spectrum of the unpoled (a) and AC poled samples (b).
Fig. 4
Fig. 4 The response time of P3HT nanofibers in anisole to 0.65 V/μm poling field. a) light polarized perpendicular to poling field, b) light polarized parallel to poling field and thus nanofibers.
Fig. 5
Fig. 5 The response time of P3HT nanofibers in anisole at various poling field.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N q ( E , l ) · l · E .

Metrics