Abstract

Cholesteric liquid crystal (CLC) materials used in electro-optical (EO) devices are characterized by high operating voltage and slow response speed, which hinders their further development in display applications. Dual-frequency CLCs (DFCLCs) can solve the problem of slow bistable transition, but the operating voltage is still high, especially in color-reflective DFCLC cells. Here we report a simple approach to lowering the switching voltage as well as to shortening the response time. This technique adopts hybrid surface treatment to modulate the structural arrangement of CLC molecules. Both planar- and vertical-alignment layers are employed and coated on one and the other substrates separately to improve the electro-optical properties of DFCLCs. We show that the threshold voltage for switching can be decreased to as low as 5 V and the shortest response time is measured to be 0.8 ms, which renders CLC EO devices including displays more practical for commercial purpose.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast-switching bistable cholesteric intensity modulator

Yu-Cheng Hsiao, Chen-Yu Tang, and Wei Lee
Opt. Express 19(10) 9744-9749 (2011)

References

  • View by:
  • |
  • |
  • |

  1. X.-Y. Huang, D.-K. Yang, and J. W. Doane, “Transient dielectric study of bistable reflective cholesteric displays and design of rapid drive scheme,” Appl. Phys. Lett. 67(9), 1211–1213 (1995).
    [Crossref]
  2. D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [Crossref]
  3. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001), Ch. 8.
  4. P.-T. Lin, X. Liang, H. Ren, and S.-T. Wu, “Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal,” Appl. Phys. Lett. 85(7), 1131–1133 (2004).
    [Crossref]
  5. Y. Yin, S. V. Shiyanovskii, A. B. Golovin, and O. D. Lavrentovich, “Dielectric torque and orientation dynamics of liquid crystals with dielectric dispersion,” Phys. Rev. Lett. 95(8), 087801 (2005).
    [Crossref] [PubMed]
  6. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]
  7. I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
    [Crossref] [PubMed]
  8. D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
    [Crossref]
  9. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
    [Crossref] [PubMed]
  10. M. R. Lewis and M. C. K. Wiltshire, “Hybrid aligned cholesteric: A novel liquid-crystal alignment,” Appl. Phys. Lett. 51(15), 1197–1199 (1987).
    [Crossref]
  11. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
    [Crossref] [PubMed]
  12. Y.-C. Hsiao, H.-T. Wang, and W. Lee, “Thermodielectric generation of defect modes in a photonic liquid crystal,” Opt. Express 22(3), 3593–3599 (2014).
    [Crossref] [PubMed]
  13. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(24), 23952–23957 (2011).
    [Crossref] [PubMed]
  14. Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
    [Crossref]
  15. F.-C. Lin and W. Lee, “Color-reflective dual-frequency cholesteric liquid crystal displays and their drive schemes,” Appl. Phys. Express 4(11), 112201 (2011).
    [Crossref]
  16. Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
    [Crossref] [PubMed]
  17. S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
    [Crossref]

2014 (1)

2013 (2)

2012 (1)

2011 (4)

2007 (1)

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

2005 (2)

Y. Yin, S. V. Shiyanovskii, A. B. Golovin, and O. D. Lavrentovich, “Dielectric torque and orientation dynamics of liquid crystals with dielectric dispersion,” Phys. Rev. Lett. 95(8), 087801 (2005).
[Crossref] [PubMed]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

2004 (1)

P.-T. Lin, X. Liang, H. Ren, and S.-T. Wu, “Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal,” Appl. Phys. Lett. 85(7), 1131–1133 (2004).
[Crossref]

1997 (1)

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

1995 (1)

X.-Y. Huang, D.-K. Yang, and J. W. Doane, “Transient dielectric study of bistable reflective cholesteric displays and design of rapid drive scheme,” Appl. Phys. Lett. 67(9), 1211–1213 (1995).
[Crossref]

1994 (1)

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

1987 (1)

M. R. Lewis and M. C. K. Wiltshire, “Hybrid aligned cholesteric: A novel liquid-crystal alignment,” Appl. Phys. Lett. 51(15), 1197–1199 (1987).
[Crossref]

Bodnar, V. H.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Bos, P. J.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Chen, C.-H.

Chien, L.-C.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Doane, J. W.

X.-Y. Huang, D.-K. Yang, and J. W. Doane, “Transient dielectric study of bistable reflective cholesteric displays and design of rapid drive scheme,” Appl. Phys. Lett. 67(9), 1211–1213 (1995).
[Crossref]

Doane, J.-W.

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Gartland, E. C.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Glasser, J.

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Golovin, A. B.

Y. Yin, S. V. Shiyanovskii, A. B. Golovin, and O. D. Lavrentovich, “Dielectric torque and orientation dynamics of liquid crystals with dielectric dispersion,” Phys. Rev. Lett. 95(8), 087801 (2005).
[Crossref] [PubMed]

Gvozdovskyy, I.

Hou, C.-T.

Hsiao, Y.-C.

Huang, H.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Huang, X.-Y.

X.-Y. Huang, D.-K. Yang, and J. W. Doane, “Transient dielectric study of bistable reflective cholesteric displays and design of rapid drive scheme,” Appl. Phys. Lett. 67(9), 1211–1213 (1995).
[Crossref]

Kosa, T.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Lavrentovich, O. D.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Y. Yin, S. V. Shiyanovskii, A. B. Golovin, and O. D. Lavrentovich, “Dielectric torque and orientation dynamics of liquid crystals with dielectric dispersion,” Phys. Rev. Lett. 95(8), 087801 (2005).
[Crossref] [PubMed]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Lee, W.

Lewis, M. R.

M. R. Lewis and M. C. K. Wiltshire, “Hybrid aligned cholesteric: A novel liquid-crystal alignment,” Appl. Phys. Lett. 51(15), 1197–1199 (1987).
[Crossref]

Liang, X.

P.-T. Lin, X. Liang, H. Ren, and S.-T. Wu, “Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal,” Appl. Phys. Lett. 85(7), 1131–1133 (2004).
[Crossref]

Lin, F.-C.

F.-C. Lin and W. Lee, “Color-reflective dual-frequency cholesteric liquid crystal displays and their drive schemes,” Appl. Phys. Express 4(11), 112201 (2011).
[Crossref]

Lin, P.-T.

P.-T. Lin, X. Liang, H. Ren, and S.-T. Wu, “Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal,” Appl. Phys. Lett. 85(7), 1131–1133 (2004).
[Crossref]

Lu, S.-Y.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Palffy-Muhoray, P.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Ren, H.

P.-T. Lin, X. Liang, H. Ren, and S.-T. Wu, “Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal,” Appl. Phys. Lett. 85(7), 1131–1133 (2004).
[Crossref]

Senyuk, B. I.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Serbina, M.

Shiyanovskii, S. V.

Y. Yin, S. V. Shiyanovskii, A. B. Golovin, and O. D. Lavrentovich, “Dielectric torque and orientation dynamics of liquid crystals with dielectric dispersion,” Phys. Rev. Lett. 95(8), 087801 (2005).
[Crossref] [PubMed]

Smalyukh, I. I.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Subacius, D.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Taheri, B.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Tang, C.-Y.

Timofeev, I. V.

Wang, H.-T.

Wiltshire, M. C. K.

M. R. Lewis and M. C. K. Wiltshire, “Hybrid aligned cholesteric: A novel liquid-crystal alignment,” Appl. Phys. Lett. 51(15), 1197–1199 (1987).
[Crossref]

Wu, C.-Y.

Wu, S.-T.

P.-T. Lin, X. Liang, H. Ren, and S.-T. Wu, “Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal,” Appl. Phys. Lett. 85(7), 1131–1133 (2004).
[Crossref]

Yamaguchi, R.

Yang, D.-K.

X.-Y. Huang, D.-K. Yang, and J. W. Doane, “Transient dielectric study of bistable reflective cholesteric displays and design of rapid drive scheme,” Appl. Phys. Lett. 67(9), 1211–1213 (1995).
[Crossref]

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yaniv, Z.

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yaroshchuk, O.

Yin, Y.

Y. Yin, S. V. Shiyanovskii, A. B. Golovin, and O. D. Lavrentovich, “Dielectric torque and orientation dynamics of liquid crystals with dielectric dispersion,” Phys. Rev. Lett. 95(8), 087801 (2005).
[Crossref] [PubMed]

Zou, Y.-H.

Zyryanov, V. Ya.

Appl. Phys. Express (1)

F.-C. Lin and W. Lee, “Color-reflective dual-frequency cholesteric liquid crystal displays and their drive schemes,” Appl. Phys. Express 4(11), 112201 (2011).
[Crossref]

Appl. Phys. Lett. (6)

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

X.-Y. Huang, D.-K. Yang, and J. W. Doane, “Transient dielectric study of bistable reflective cholesteric displays and design of rapid drive scheme,” Appl. Phys. Lett. 67(9), 1211–1213 (1995).
[Crossref]

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

P.-T. Lin, X. Liang, H. Ren, and S.-T. Wu, “Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal,” Appl. Phys. Lett. 85(7), 1131–1133 (2004).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

M. R. Lewis and M. C. K. Wiltshire, “Hybrid aligned cholesteric: A novel liquid-crystal alignment,” Appl. Phys. Lett. 51(15), 1197–1199 (1987).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Yin, S. V. Shiyanovskii, A. B. Golovin, and O. D. Lavrentovich, “Dielectric torque and orientation dynamics of liquid crystals with dielectric dispersion,” Phys. Rev. Lett. 95(8), 087801 (2005).
[Crossref] [PubMed]

Other (1)

S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001), Ch. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the bidirectional switching in a HA DFCLC cell. VL: low-frequency voltage; VH: high-frequency voltage.
Fig. 2
Fig. 2 Transmission spectra of (a) a PA cell and (b) a HA cell containing 2.18-wt% CD in MLC2048 and (c) three HA cells individually composed of CD at 2.49, 2.88, and 3.51 wt%. (d) The appearance of the three HA cells.
Fig. 3
Fig. 3 Voltage-dependent transmittance at operation frequencies of (a) 1 kHz and (b) 100 kHz in cell R of 4.0 ± 0.5 μm cell gap.
Fig. 4
Fig. 4 Reflection intensity of cells R, G, and B vs. the applied voltage pulse at (a) 1 kHz and (b) 100 kHz.
Fig. 5
Fig. 5 Optical responses in cells R upon switching at (a) 1 kHz and (b) 100 kHz.

Tables (1)

Tables Icon

Table 1 Response Times tPF and tFP at 10 Vrms for HA Cells

Metrics