Abstract

We investigate the potential of anti-ferromagnetic nanofilms as broadband antireflection coatings in the terahertz frequency range. The anti-ferromagnetic layer is modeled by an analytic wave-impedance matching approach. The experimental results of the transmission and reflection measurements demonstrate the effectiveness of our antireflection coatings. Furthermore, we use anti-ferromagnetic nanofilms as antireflection coating for a terahertz beam splitter. Compared with conventional terahertz beam splitters consisting of an uncoated thick silicon wafer, the coated silicon beam splitter has two advantages: elimination of multiple reflections and improvement of the signal-to-noise ratio for terahertz time-domain spectroscopy in reflection geometry.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-cost ultra-thin broadband terahertz beam-splitter

Benjamin S.-Y. Ung, Christophe Fumeaux, Hungyen Lin, Bernd M. Fischer, Brian W.-H. Ng, and Derek Abbott
Opt. Express 20(5) 4968-4978 (2012)

Antireflection self-reference method based on ultrathin metallic nanofilms for improving terahertz reflection spectroscopy

Weien Lai, Haibing Cao, Jun Yang, Guangsheng Deng, Zhiping Yin, Qian Zhang, Beatriz Pelaz, and Pablo del Pino
Opt. Express 26(15) 19470-19478 (2018)

Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor

Hongxing Wu, Fenghua Shi, and Yihang Chen
Opt. Express 24(18) 20663-20671 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  4. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
    [Crossref]
  5. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  6. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
    [Crossref] [PubMed]
  7. S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
    [Crossref]
  8. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref] [PubMed]
  9. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
    [Crossref]
  10. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
    [Crossref]
  11. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
    [Crossref] [PubMed]
  12. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. Laveigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Opt. 46(32), 7884–7888 (2007).
    [Crossref] [PubMed]
  13. C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 33(2), 127–130 (2012).
    [Crossref]
  14. B. S. Ung, C. Fumeaux, H. Lin, B. M. Fischer, B. W. Ng, and D. Abbott, “Low-cost ultra-thin broadband terahertz beam-splitter,” Opt. Express 20(5), 4968–4978 (2012).
    [Crossref] [PubMed]
  15. J. S. Li, D. G. Xu, and J. Q. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt. 49(24), 4494–4497 (2010).
    [Crossref] [PubMed]
  16. T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
    [Crossref] [PubMed]
  17. H. T. Chen, J. Zhou, J. F. O’Hara, and A. J. Taylor, “A numerical investigation of metamaterial antireflection coatings,” Tstnetwork. Org. 3(2), 66–73 (2010).
  18. W. E. Lai, H. W. Zhang, Y. H. Zhu, Q. Y. Wen, W. W. Du, and X. L. Tang, “Bilayer metallic nanofilms as broadband antireflection coatings in terahertz optical systems,” Opt. Express 22(3), 2174–2184 (2014).
    [Crossref] [PubMed]
  19. W. E. Lai, H. W. Zhang, Y. H. Zhu, and Q. Y. Wen, “A novel method of terahertz spectroscopy and imaging in reflection geometry,” Appl. Spectrosc. 67(1), 36–39 (2013).
    [Crossref] [PubMed]
  20. K. Kawase and N. Hiromoto, “Terahertz-wave antireflection coating on Ge and GaAs with fused quartz,” Appl. Opt. 37(10), 1862–1866 (1998).
    [Crossref] [PubMed]
  21. A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
    [Crossref]
  22. J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express 15(11), 6552–6560 (2007).
    [Crossref] [PubMed]
  23. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
    [Crossref] [PubMed]
  24. Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
    [Crossref]
  25. F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
    [Crossref] [PubMed]
  26. Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
    [Crossref]
  27. X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
    [Crossref]
  28. L. Ding, Q. Yang, S. Wu, and J. H. Teng, “Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh,” Laser Photonics Rev. 8(6), 941–945 (2014).
    [Crossref]
  29. M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. Terahertz Waves 35(6–7), 503–508 (2014).
    [Crossref]
  30. K. M. S. W. McKnight, K. P. Stewart, H. D. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27(5), 327–333 (1987).
    [Crossref]
  31. M. Dressel and G. Gruener, “Electrodynamics of Solids,” Electrodynamics of Solids (Cambridge Press, 2002).
  32. M. Born and E. Wolf, “Principles of optics,” Principles of Optics (Pergamon Press, 1980).
  33. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time domain-spectroscopy with terahertz beams of dielectrics an semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]

2015 (2)

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

2014 (6)

W. E. Lai, H. W. Zhang, Y. H. Zhu, Q. Y. Wen, W. W. Du, and X. L. Tang, “Bilayer metallic nanofilms as broadband antireflection coatings in terahertz optical systems,” Opt. Express 22(3), 2174–2184 (2014).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
[Crossref] [PubMed]

L. Ding, Q. Yang, S. Wu, and J. H. Teng, “Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh,” Laser Photonics Rev. 8(6), 941–945 (2014).
[Crossref]

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. Terahertz Waves 35(6–7), 503–508 (2014).
[Crossref]

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

2013 (1)

2012 (2)

B. S. Ung, C. Fumeaux, H. Lin, B. M. Fischer, B. W. Ng, and D. Abbott, “Low-cost ultra-thin broadband terahertz beam-splitter,” Opt. Express 20(5), 4968–4978 (2012).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 33(2), 127–130 (2012).
[Crossref]

2011 (4)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[Crossref] [PubMed]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[Crossref] [PubMed]

2010 (4)

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

J. S. Li, D. G. Xu, and J. Q. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt. 49(24), 4494–4497 (2010).
[Crossref] [PubMed]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[Crossref]

H. T. Chen, J. Zhou, J. F. O’Hara, and A. J. Taylor, “A numerical investigation of metamaterial antireflection coatings,” Tstnetwork. Org. 3(2), 66–73 (2010).

2009 (2)

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

2008 (1)

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

2007 (4)

2002 (2)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

1998 (1)

1990 (1)

1987 (1)

K. M. S. W. McKnight, K. P. Stewart, H. D. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27(5), 327–333 (1987).
[Crossref]

Abbott, D.

Adam, A. J. L.

Astley, V.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[Crossref]

Azad, A. K.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Bai, J.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Bang, O.

Berry, C. W.

C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 33(2), 127–130 (2012).
[Crossref]

Bhaskaran, M.

Bonn, M.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Busch, S. F.

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Cai, B.

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

Carr, G. L.

Chen, F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, and A. J. Taylor, “A numerical investigation of metamaterial antireflection coatings,” Tstnetwork. Org. 3(2), 66–73 (2010).

Chen, Y. W.

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Cundiff, S. T.

Darmo, J.

Ding, L.

L. Ding, Q. Yang, S. Wu, and J. H. Teng, “Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh,” Laser Photonics Rev. 8(6), 941–945 (2014).
[Crossref]

Drew, H. D.

K. M. S. W. McKnight, K. P. Stewart, H. D. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27(5), 327–333 (1987).
[Crossref]

Du, W. W.

Dupuis, A.

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[Crossref]

Fattinger, C.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fey, M.

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Fischer, B. M.

Fumeaux, C.

Grischkowsky, D.

Gutruf, P.

Han, P. Y.

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

Heinz, T. F.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Helm, H.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Hendry, E.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Hiromoto, N.

Homes, C. C.

Hu, F.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Jansen, C.

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[Crossref] [PubMed]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[Crossref]

Jarrahi, M.

C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 33(2), 127–130 (2012).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

Kawase, K.

Keiding, S.

Kern, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Koch, M.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. Terahertz Waves 35(6–7), 503–508 (2014).
[Crossref]

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[Crossref] [PubMed]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[Crossref] [PubMed]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[Crossref]

Koch, S. W.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. Terahertz Waves 35(6–7), 503–508 (2014).
[Crossref]

Kröll, J.

Lai, W. E.

Laveigne, J. D.

Li, J. S.

Li, W.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Li, Y.

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

Lin, H.

Liu, X. D.

Lobo, R. P. S. M.

McKnight, K. M. S. W.

K. M. S. W. McKnight, K. P. Stewart, H. D. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27(5), 327–333 (1987).
[Crossref]

Mittleman, D. M.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[Crossref]

Moorjani, K.

K. M. S. W. McKnight, K. P. Stewart, H. D. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27(5), 327–333 (1987).
[Crossref]

Ng, B. W.

Nielsen, K.

Niu, T.

O’Hara, J. F.

H. T. Chen, J. Zhou, J. F. O’Hara, and A. J. Taylor, “A numerical investigation of metamaterial antireflection coatings,” Tstnetwork. Org. 3(2), 66–73 (2010).

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Parrott, E. P. J.

Pickwell-MacPherson, E.

Planken, P. C.

Probst, T.

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Rahimi-Iman, A.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. Terahertz Waves 35(6–7), 503–508 (2014).
[Crossref]

Rasmussen, H. K.

Ren, Z.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Schäfer, F.

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Scheller, M.

Scherger, B.

Shan, J.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Skorobogatiy, M.

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[Crossref]

Sriram, S.

Stein, M.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. Terahertz Waves 35(6–7), 503–508 (2014).
[Crossref]

Stewart, K. P.

K. M. S. W. McKnight, K. P. Stewart, H. D. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27(5), 327–333 (1987).
[Crossref]

Tang, X. L.

Tanner, D. B.

Taylor, A. J.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, and A. J. Taylor, “A numerical investigation of metamaterial antireflection coatings,” Tstnetwork. Org. 3(2), 66–73 (2010).

Teng, J. H.

L. Ding, Q. Yang, S. Wu, and J. H. Teng, “Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh,” Laser Photonics Rev. 8(6), 941–945 (2014).
[Crossref]

Thoman, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Ulbricht, R.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Ung, B. S.

Unterrainer, K.

Upadhyay, A.

Van Exter, M.

Vieweg, N.

Walther, M.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Wang, X.

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

Weidenbach, M.

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Wen, Q. Y.

Wichmann, M.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. Terahertz Waves 35(6–7), 503–508 (2014).
[Crossref]

Wiesauer, K.

Wietzke, S.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[Crossref]

Withayachumnankul, W.

Wu, S.

L. Ding, Q. Yang, S. Wu, and J. H. Teng, “Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh,” Laser Photonics Rev. 8(6), 941–945 (2014).
[Crossref]

Xu, D. G.

Xu, X.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Yan, F.

Yang, Q.

L. Ding, Q. Yang, S. Wu, and J. H. Teng, “Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh,” Laser Photonics Rev. 8(6), 941–945 (2014).
[Crossref]

Yao, J. Q.

Zhang, H. W.

Zhang, X. C.

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhao, P.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zheng, X.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zhou, J.

H. T. Chen, J. Zhou, J. F. O’Hara, and A. J. Taylor, “A numerical investigation of metamaterial antireflection coatings,” Tstnetwork. Org. 3(2), 66–73 (2010).

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zhu, Y.

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

Zhu, Y. H.

Appl. Opt. (4)

Appl. Phys. Lett. (5)

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[Crossref]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[Crossref]

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

X. Wang, Y. Li, B. Cai, Y. Zhu, X. Wang, Y. Li, B. Cai, and Y. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

Appl. Spectrosc. (1)

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Infrared Phys. Technol. (1)

K. M. S. W. McKnight, K. P. Stewart, H. D. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27(5), 327–333 (1987).
[Crossref]

J. Infrared Millim. Terahertz Waves (3)

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. Terahertz Waves 35(6–7), 503–508 (2014).
[Crossref]

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, M. Koch, and T. Probst, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves 33(2), 127–130 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

L. Ding, Q. Yang, S. Wu, and J. H. Teng, “Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh,” Laser Photonics Rev. 8(6), 941–945 (2014).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (1)

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Phys. Rev. Lett. (1)

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Tstnetwork. Org. (1)

H. T. Chen, J. Zhou, J. F. O’Hara, and A. J. Taylor, “A numerical investigation of metamaterial antireflection coatings,” Tstnetwork. Org. 3(2), 66–73 (2010).

Other (2)

M. Dressel and G. Gruener, “Electrodynamics of Solids,” Electrodynamics of Solids (Cambridge Press, 2002).

M. Born and E. Wolf, “Principles of optics,” Principles of Optics (Pergamon Press, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Interface between two media with refractive indices n1 and n2, covered by a metallic thin film. Blue arrows show an incident THz beam that is reflected and transmitted through the coated substrate.
Fig. 2
Fig. 2 Simulations of the reflection coefficients of secondary reflection R 2 from the coated substrates at different angle of incidence for s-polarization (a) and p-polarization (b).
Fig. 3
Fig. 3 Schematic of terahertz pulse transmitted through the uncoated (left) and the coated (right) substrates in the reflection (a) and the transmission (b) geometries.
Fig. 4
Fig. 4 The main and the second terahertz pulses transmitted through the silicon substrate with ultrathin Ir25Mn75 film in reflection geometry (a); The main and the second terahertz pulses reflected from the silicon substrate with ultrathin Ir25Mn75 film in transmission geometry (b).
Fig. 5
Fig. 5 Schematic of the experimental setup in reflection geometry with a schematic of the THz pathway.
Fig. 6
Fig. 6 Time domain waveforms (a) and frequency spectrums (b) of the terahertz pulses reflected from uncoated substrate and coated substrate.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r s = E r E i = n 2 cos θ 2 n 1 cos θ 1 Z 0 σ f i l m d f i l m n 2 cos θ 2 + n 1 cos θ 1 + Z 0 σ f i l m d f i l m
r p = E r E i = n 1 cos θ 2 n 2 cos θ 1 + Z 0 cos θ 2 cos θ 1 σ f i l m d f i l m n 1 cos θ 2 + n 2 cos θ 1 + Z 0 cos θ 2 cos θ 1 σ f i l m d f i l m ,
n 2 cos θ 2 n 1 cos θ 1 Z 0 σ f i l m d f i l m = 0.
n 1 cos θ 2 n 2 cos θ 1 + Z 0 cos θ 2 cos θ 1 σ f i l m d f i l m = 0.

Metrics