Abstract

We report on the continuous-wave and tunable laser operation of a transparent Yb:YAG ceramic which is prepared by non-aqueous tape casting method with vacuum sintering at 1750 °C for 10 h. The Yb:YAG ceramic is dense and with excellent optical in-line transmittance characteristics. In the lasing experiment, the Yb:YAG is end-pumped by a high-brightness 974 nm diode pump in fiber core of 50 μm and numerical aperture of 0.22, which results in a maximum output power of 7.01 W and a slope efficiency of 60.2% at 1050 nm. A smooth tunable curve from 1022 nm to 1058 nm is achieved in tunable laser testing, revealing the broadband lasing spectra over 30 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser

Lin Ge, Jiang Li, Zhiwei Zhou, Haiyun Qu, Manjiang Dong, Yan Zhu, Tengfei Xie, Wei Li, Min Chen, Huamin Kou, Yun Shi, Yubai Pan, Xiqi Feng, and Jingkun Guo
Opt. Mater. Express 4(5) 1042-1049 (2014)

Diode-pumped tape casting planar waveguide YAG/Tm:YAG/YAG ceramic laser at 2013.76  nm

Baoquan Yao, Xiaolei Li, Tongyu Dai, Zheng Cui, Shuang Bai, Hongyu Yang, Jiang Li, Youlun Ju, Lin Ge, Yuezhu Wang, and Yubai Pan
Opt. Lett. 41(2) 254-256 (2016)

Laser-diode pumped 40-W Yb:YAGceramic laser

Qiang Hao, Wenxue Li, Haifeng Pan, Xiaoyi Zhang, Benxue Jiang, Yubai Pan, and Heping Zeng
Opt. Express 17(20) 17734-17738 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
    [Crossref]
  2. Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
    [Crossref]
  3. W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
    [Crossref]
  4. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
    [Crossref]
  5. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
    [Crossref] [PubMed]
  6. J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
    [Crossref]
  7. W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
    [Crossref] [PubMed]
  8. T. Taira, “Recent advances in crystal optics/Avancées récentes en optique crystalline Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
    [Crossref]
  9. T. Taira, “RE3+-Ion-Doped YAG Ceramic Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [Crossref]
  10. M. Tsunekane and T. Taira, “High-Power Operation of Diode Edge-Pumped, Glue-Bonded, Composite Yb:Y3Al5O12 Microchip Laser with Ceramic, Undoped YAG Pump Light-Guide,” Jpn. J. Appl. Phys. 44(37), 1164–1167 (2005).
    [Crossref]
  11. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb: Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
    [Crossref]
  12. P. Klopp, V. Petrov, U. Griebner, V. Nesterenko, V. Nikolov, M. Marinov, M. A. Bursukova, and M. Galan, “Continuous-wave lasing of a stoichiometric Yb laser material: KYb(WO4)2.,” Opt. Lett. 28(5), 322–324 (2003).
    [Crossref] [PubMed]
  13. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb: Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845–5847 (2004).
    [Crossref]
  14. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Femtosecond Yb3+-doped Y3(Sc0.5Al0.5)2O12 ceramic laser,” Opt. Mater. 29(10), 1283–1288 (2007).
    [Crossref]
  15. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  16. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
    [Crossref] [PubMed]
  17. H. Zhou, W. Li, K. Yang, N. Lin, B. Jiang, Y. Pan, and H. Zeng, “Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier,” Opt. Express 20(S4Suppl 4), A489–A495 (2012).
    [Crossref] [PubMed]
  18. A. V. Okishev, “Highly efficient room-temperature Yb:YAG ceramic laser and regenerative amplifier,” Opt. Lett. 37(7), 1199–1201 (2012).
    [Crossref] [PubMed]
  19. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
    [Crossref] [PubMed]
  20. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36(9), 1867–1874 (1997).
    [Crossref] [PubMed]
  21. T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
    [Crossref]
  22. J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
    [Crossref]
  23. J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA TOPS Adv. Solid-State Lasers. 34, 106–111 (2000).
  24. T. Dascalu, N. Pavel, and T. Taira, “90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser,” Appl. Phys. Lett. 83(20), 4086–4088 (2003).
    [Crossref]
  25. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  26. J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
    [Crossref]
  27. G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
  28. H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).
  29. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
    [Crossref]
  30. H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, and A. A. Kaminskii, “Characterization and laser performances of highly transparent Nd:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
    [Crossref]
  31. M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett. 31(13), 2003–2005 (2006).
    [Crossref] [PubMed]
  32. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
    [Crossref]
  33. A. Ikesue and Y. L. Aung, “Synthesis and Performance of Advanced Ceramic Lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
    [Crossref]
  34. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  35. Y. Fu, Y. Liu, and S. Hu, “Aqueous tape casting and crystallization behavior of gadolinium-doped ceria,” Ceram. Int. 35(8), 3153–3159 (2009).
    [Crossref]
  36. D. Hotza and P. Greil, “Review: aqueous tape casting of ceramic powders,” Mater. Sci. Eng. A 202(1-2), 206–217 (1995).
    [Crossref]
  37. M. Descamps, G. Ringuet, D. Leger, and B. Thierry, “Tape-casting: Relationship between organic constituents and the physical and mechanical properties of tapes,” J. Eur. Ceram. Soc. 15(4), 357–362 (1995).
    [Crossref]
  38. C. Ye, J. Hao, B. Shen, and J. Zhai, “Large Strain Response in <001> Textured 0.79BNT–0.20BKT–0.01NKN Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc. 95(11), 3577–3581 (2012).
    [Crossref]
  39. X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
    [Crossref]
  40. C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
    [Crossref]
  41. K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Multilayer YAG/Yb:YAG Composite Ceramic Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602705 (2015).
    [Crossref]
  42. X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
    [Crossref]
  43. A. J. Bayramian, C. D. Marshall, K. I. Schaffers, and S. A. Payne, “Characterization of Yb3+: Sr5-x Bax (PO4)3F crystals for diode-pumped lasers,” IEEE J. Quantum Electron. 35(4), 665–674 (1999).
    [Crossref]
  44. I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
    [Crossref]

2015 (1)

K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Multilayer YAG/Yb:YAG Composite Ceramic Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602705 (2015).
[Crossref]

2014 (1)

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

2013 (2)

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

2012 (3)

2010 (1)

2009 (1)

Y. Fu, Y. Liu, and S. Hu, “Aqueous tape casting and crystallization behavior of gadolinium-doped ceria,” Ceram. Int. 35(8), 3153–3159 (2009).
[Crossref]

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

2007 (7)

H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, and A. A. Kaminskii, “Characterization and laser performances of highly transparent Nd:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Femtosecond Yb3+-doped Y3(Sc0.5Al0.5)2O12 ceramic laser,” Opt. Mater. 29(10), 1283–1288 (2007).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

T. Taira, “Recent advances in crystal optics/Avancées récentes en optique crystalline Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[Crossref]

T. Taira, “RE3+-Ion-Doped YAG Ceramic Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

2006 (3)

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

A. Ikesue and Y. L. Aung, “Synthesis and Performance of Advanced Ceramic Lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett. 31(13), 2003–2005 (2006).
[Crossref] [PubMed]

2005 (2)

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).

M. Tsunekane and T. Taira, “High-Power Operation of Diode Edge-Pumped, Glue-Bonded, Composite Yb:Y3Al5O12 Microchip Laser with Ceramic, Undoped YAG Pump Light-Guide,” Jpn. J. Appl. Phys. 44(37), 1164–1167 (2005).
[Crossref]

2004 (4)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb: Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb: Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845–5847 (2004).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

2003 (3)

2002 (2)

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

2000 (4)

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA TOPS Adv. Solid-State Lasers. 34, 106–111 (2000).

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

1999 (1)

A. J. Bayramian, C. D. Marshall, K. I. Schaffers, and S. A. Payne, “Characterization of Yb3+: Sr5-x Bax (PO4)3F crystals for diode-pumped lasers,” IEEE J. Quantum Electron. 35(4), 665–674 (1999).
[Crossref]

1997 (2)

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36(9), 1867–1874 (1997).
[Crossref] [PubMed]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

1995 (5)

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

D. Hotza and P. Greil, “Review: aqueous tape casting of ceramic powders,” Mater. Sci. Eng. A 202(1-2), 206–217 (1995).
[Crossref]

M. Descamps, G. Ringuet, D. Leger, and B. Thierry, “Tape-casting: Relationship between organic constituents and the physical and mechanical properties of tapes,” J. Eur. Ceram. Soc. 15(4), 357–362 (1995).
[Crossref]

1991 (1)

Aggarwal, R. L.

Aschwanden, A.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

A. Ikesue and Y. L. Aung, “Synthesis and Performance of Advanced Ceramic Lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

Ba, X.

K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Multilayer YAG/Yb:YAG Composite Ceramic Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602705 (2015).
[Crossref]

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

Bai, D.

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

Bayramian, A. J.

A. J. Bayramian, C. D. Marshall, K. I. Schaffers, and S. A. Payne, “Characterization of Yb3+: Sr5-x Bax (PO4)3F crystals for diode-pumped lasers,” IEEE J. Quantum Electron. 35(4), 665–674 (1999).
[Crossref]

Bisson, J.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Brunner, F.

Bursukova, M. A.

Byer, R. L.

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36(9), 1867–1874 (1997).
[Crossref] [PubMed]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

Choi, H. K.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Dascalu, T.

T. Dascalu, N. Pavel, and T. Taira, “90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser,” Appl. Phys. Lett. 83(20), 4086–4088 (2003).
[Crossref]

Descamps, M.

M. Descamps, G. Ringuet, D. Leger, and B. Thierry, “Tape-casting: Relationship between organic constituents and the physical and mechanical properties of tapes,” J. Eur. Ceram. Soc. 15(4), 357–362 (1995).
[Crossref]

Fan, T. Y.

Feng, Y.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Fu, Y.

Y. Fu, Y. Liu, and S. Hu, “Aqueous tape casting and crystallization behavior of gadolinium-doped ceria,” Ceram. Int. 35(8), 3153–3159 (2009).
[Crossref]

Furusato, I.

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

Galan, M.

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Greil, P.

D. Hotza and P. Greil, “Review: aqueous tape casting of ceramic powders,” Mater. Sci. Eng. A 202(1-2), 206–217 (1995).
[Crossref]

Griebner, U.

Guo, J.

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Hao, J.

C. Ye, J. Hao, B. Shen, and J. Zhai, “Large Strain Response in <001> Textured 0.79BNT–0.20BKT–0.01NKN Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc. 95(11), 3577–3581 (2012).
[Crossref]

Hao, Q.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

Häring, R.

Hönninger, C.

Hotza, D.

D. Hotza and P. Greil, “Review: aqueous tape casting of ceramic powders,” Mater. Sci. Eng. A 202(1-2), 206–217 (1995).
[Crossref]

Hu, S.

Y. Fu, Y. Liu, and S. Hu, “Aqueous tape casting and crystallization behavior of gadolinium-doped ceria,” Ceram. Int. 35(8), 3153–3159 (2009).
[Crossref]

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Femtosecond Yb3+-doped Y3(Sc0.5Al0.5)2O12 ceramic laser,” Opt. Mater. 29(10), 1283–1288 (2007).
[Crossref]

A. Ikesue and Y. L. Aung, “Synthesis and Performance of Advanced Ceramic Lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb: Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845–5847 (2004).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb: Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Innerhofer, E.

Jiang, B.

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

H. Zhou, W. Li, K. Yang, N. Lin, B. Jiang, Y. Pan, and H. Zeng, “Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier,” Opt. Express 20(S4Suppl 4), A489–A495 (2012).
[Crossref] [PubMed]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Kamata, K.

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kaminskii, A. A.

H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, and A. A. Kaminskii, “Characterization and laser performances of highly transparent Nd:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

Keller, U.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Klopp, P.

Kobayashi, T.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

Kou, H.

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

Kudryashov, A.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Kumar, G. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

Kumkar, M.

Kurimura, S.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA TOPS Adv. Solid-State Lasers. 34, 106–111 (2000).

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Lacovara, P.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Leger, D.

M. Descamps, G. Ringuet, D. Leger, and B. Thierry, “Tape-casting: Relationship between organic constituents and the physical and mechanical properties of tapes,” J. Eur. Ceram. Soc. 15(4), 357–362 (1995).
[Crossref]

Li, J.

K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Multilayer YAG/Yb:YAG Composite Ceramic Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602705 (2015).
[Crossref]

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Li, W.

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

H. Zhou, W. Li, K. Yang, N. Lin, B. Jiang, Y. Pan, and H. Zeng, “Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier,” Opt. Express 20(S4Suppl 4), A489–A495 (2012).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

Lin, N.

Liu, J.

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

Liu, W.

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

Liu, Y.

Y. Fu, Y. Liu, and S. Hu, “Aqueous tape casting and crystallization behavior of gadolinium-doped ceria,” Ceram. Int. 35(8), 3153–3159 (2009).
[Crossref]

Lu, J.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Lu, W.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

Marinov, M.

Marshall, C. D.

A. J. Bayramian, C. D. Marshall, K. I. Schaffers, and S. A. Payne, “Characterization of Yb3+: Sr5-x Bax (PO4)3F crystals for diode-pumped lasers,” IEEE J. Quantum Electron. 35(4), 665–674 (1999).
[Crossref]

Nakamura, S.

Nesterenko, V.

Nikolov, V.

Ogawa, T.

Okishev, A. V.

Pan, Y.

K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Multilayer YAG/Yb:YAG Composite Ceramic Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602705 (2015).
[Crossref]

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

H. Zhou, W. Li, K. Yang, N. Lin, B. Jiang, Y. Pan, and H. Zeng, “Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier,” Opt. Express 20(S4Suppl 4), A489–A495 (2012).
[Crossref] [PubMed]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Paschotta, R.

Pavel, N.

T. Dascalu, N. Pavel, and T. Taira, “90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser,” Appl. Phys. Lett. 83(20), 4086–4088 (2003).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA TOPS Adv. Solid-State Lasers. 34, 106–111 (2000).

Payne, S. A.

A. J. Bayramian, C. D. Marshall, K. I. Schaffers, and S. A. Payne, “Characterization of Yb3+: Sr5-x Bax (PO4)3F crystals for diode-pumped lasers,” IEEE J. Quantum Electron. 35(4), 665–674 (1999).
[Crossref]

Petrov, V.

Prabhu, M.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Ringuet, G.

M. Descamps, G. Ringuet, D. Leger, and B. Thierry, “Tape-casting: Relationship between organic constituents and the physical and mechanical properties of tapes,” J. Eur. Ceram. Soc. 15(4), 357–362 (1995).
[Crossref]

Saikawa, J.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Femtosecond Yb3+-doped Y3(Sc0.5Al0.5)2O12 ceramic laser,” Opt. Mater. 29(10), 1283–1288 (2007).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb: Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845–5847 (2004).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb: Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA TOPS Adv. Solid-State Lasers. 34, 106–111 (2000).

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

Sato, Y.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Femtosecond Yb3+-doped Y3(Sc0.5Al0.5)2O12 ceramic laser,” Opt. Mater. 29(10), 1283–1288 (2007).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb: Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845–5847 (2004).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb: Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Schaffers, K. I.

A. J. Bayramian, C. D. Marshall, K. I. Schaffers, and S. A. Payne, “Characterization of Yb3+: Sr5-x Bax (PO4)3F crystals for diode-pumped lasers,” IEEE J. Quantum Electron. 35(4), 665–674 (1999).
[Crossref]

Shen, B.

C. Ye, J. Hao, B. Shen, and J. Zhai, “Large Strain Response in <001> Textured 0.79BNT–0.20BKT–0.01NKN Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc. 95(11), 3577–3581 (2012).
[Crossref]

Shirakawa, A.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Shoji, I.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA TOPS Adv. Solid-State Lasers. 34, 106–111 (2000).

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Song, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Su, L.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

Südmeyer, T.

Taira, T.

T. Taira, “Recent advances in crystal optics/Avancées récentes en optique crystalline Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[Crossref]

T. Taira, “RE3+-Ion-Doped YAG Ceramic Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Femtosecond Yb3+-doped Y3(Sc0.5Al0.5)2O12 ceramic laser,” Opt. Mater. 29(10), 1283–1288 (2007).
[Crossref]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
[Crossref]

M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett. 31(13), 2003–2005 (2006).
[Crossref] [PubMed]

M. Tsunekane and T. Taira, “High-Power Operation of Diode Edge-Pumped, Glue-Bonded, Composite Yb:Y3Al5O12 Microchip Laser with Ceramic, Undoped YAG Pump Light-Guide,” Jpn. J. Appl. Phys. 44(37), 1164–1167 (2005).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb: Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845–5847 (2004).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb: Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

T. Dascalu, N. Pavel, and T. Taira, “90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser,” Appl. Phys. Lett. 83(20), 4086–4088 (2003).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA TOPS Adv. Solid-State Lasers. 34, 106–111 (2000).

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36(9), 1867–1874 (1997).
[Crossref] [PubMed]

Takaichi, K.

H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, and A. A. Kaminskii, “Characterization and laser performances of highly transparent Nd:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Thierry, B.

M. Descamps, G. Ringuet, D. Leger, and B. Thierry, “Tape-casting: Relationship between organic constituents and the physical and mechanical properties of tapes,” J. Eur. Ceram. Soc. 15(4), 357–362 (1995).
[Crossref]

Tsunekane, M.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
[Crossref]

M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett. 31(13), 2003–2005 (2006).
[Crossref] [PubMed]

M. Tsunekane and T. Taira, “High-Power Operation of Diode Edge-Pumped, Glue-Bonded, Composite Yb:Y3Al5O12 Microchip Laser with Ceramic, Undoped YAG Pump Light-Guide,” Jpn. J. Appl. Phys. 44(37), 1164–1167 (2005).
[Crossref]

Tulloch, W. M.

Ueda, K.

H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, and A. A. Kaminskii, “Characterization and laser performances of highly transparent Nd:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Uematsu, T.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Unnikrishnan, N. V.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

Wada, S.

Wang, C.

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

Wang, C. A.

Wu, L.

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

Wu, Y.

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Xu, J.

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Xu, Y.

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Yagi, H.

H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, and A. A. Kaminskii, “Characterization and laser performances of highly transparent Nd:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Yamasaki, Y.

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).

Yan, C.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

Yanagitani, T.

H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, and A. A. Kaminskii, “Characterization and laser performances of highly transparent Nd:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Yang, K.

K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Multilayer YAG/Yb:YAG Composite Ceramic Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602705 (2015).
[Crossref]

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

H. Zhou, W. Li, K. Yang, N. Lin, B. Jiang, Y. Pan, and H. Zeng, “Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier,” Opt. Express 20(S4Suppl 4), A489–A495 (2012).
[Crossref] [PubMed]

Yang, X.

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

Ye, C.

C. Ye, J. Hao, B. Shen, and J. Zhai, “Large Strain Response in <001> Textured 0.79BNT–0.20BKT–0.01NKN Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc. 95(11), 3577–3581 (2012).
[Crossref]

Yoshida, K.

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Yoshioka, H.

Zeng, H.

K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Multilayer YAG/Yb:YAG Composite Ceramic Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602705 (2015).
[Crossref]

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

H. Zhou, W. Li, K. Yang, N. Lin, B. Jiang, Y. Pan, and H. Zeng, “Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier,” Opt. Express 20(S4Suppl 4), A489–A495 (2012).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

Zeng, Y.

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

Zhai, H.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

Zhai, J.

C. Ye, J. Hao, B. Shen, and J. Zhai, “Large Strain Response in <001> Textured 0.79BNT–0.20BKT–0.01NKN Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc. 95(11), 3577–3581 (2012).
[Crossref]

Zhao, G.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[Crossref] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

Zheng, L.

Zhou, H.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. Bisson, Y. Feng, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Appl. Phys. Lett. (6)

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
[Crossref]

T. Dascalu, N. Pavel, and T. Taira, “90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser,” Appl. Phys. Lett. 83(20), 4086–4088 (2003).
[Crossref]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb: Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb: Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb: Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845–5847 (2004).
[Crossref]

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

C. R. Phys. (1)

T. Taira, “Recent advances in crystal optics/Avancées récentes en optique crystalline Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[Crossref]

Ceram. Int. (1)

Y. Fu, Y. Liu, and S. Hu, “Aqueous tape casting and crystallization behavior of gadolinium-doped ceria,” Ceram. Int. 35(8), 3153–3159 (2009).
[Crossref]

High Power Laser Science and Engineering (1)

C. Wang, W. Li, X. Yang, D. Bai, K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Tape casting of a YAG/Yb:YAG/YAG transparent ceramic for a broadband tunable laser,” High Power Laser Science and Engineering 2, e36 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

A. J. Bayramian, C. D. Marshall, K. I. Schaffers, and S. A. Payne, “Characterization of Yb3+: Sr5-x Bax (PO4)3F crystals for diode-pumped lasers,” IEEE J. Quantum Electron. 35(4), 665–674 (1999).
[Crossref]

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).

IEEE J. Sel. Top. Quantum Electron. (4)

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

T. Taira, “RE3+-Ion-Doped YAG Ceramic Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

K. Yang, X. Ba, J. Li, Y. Pan, and H. Zeng, “Multilayer YAG/Yb:YAG Composite Ceramic Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602705 (2015).
[Crossref]

J. Alloy. Comp. (1)

X. Ba, J. Li, Y. Pan, Y. Zeng, H. Kou, W. Liu, J. Liu, L. Wu, and J. Guo, “Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp. 577, 228–231 (2013).
[Crossref]

J. Am. Ceram. Soc. (6)

C. Ye, J. Hao, B. Shen, and J. Zhai, “Large Strain Response in <001> Textured 0.79BNT–0.20BKT–0.01NKN Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc. 95(11), 3577–3581 (2012).
[Crossref]

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

A. Ikesue and Y. L. Aung, “Synthesis and Performance of Advanced Ceramic Lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

J. Eur. Ceram. Soc. (1)

M. Descamps, G. Ringuet, D. Leger, and B. Thierry, “Tape-casting: Relationship between organic constituents and the physical and mechanical properties of tapes,” J. Eur. Ceram. Soc. 15(4), 357–362 (1995).
[Crossref]

J. Rare Earths (1)

X. Ba, J. Li, Y. Pan, J. Liu, B. Jiang, W. Liu, H. Kou, and J. Guo, “Optimization of dispersing agents for preparing YAG transparent ceramics,” J. Rare Earths 31(5), 507–511 (2013).
[Crossref]

Jpn. J. Appl. Phys. (2)

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

M. Tsunekane and T. Taira, “High-Power Operation of Diode Edge-Pumped, Glue-Bonded, Composite Yb:Y3Al5O12 Microchip Laser with Ceramic, Undoped YAG Pump Light-Guide,” Jpn. J. Appl. Phys. 44(37), 1164–1167 (2005).
[Crossref]

Laser Phys. (1)

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).

Mater. Sci. Eng. A (1)

D. Hotza and P. Greil, “Review: aqueous tape casting of ceramic powders,” Mater. Sci. Eng. A 202(1-2), 206–217 (1995).
[Crossref]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. (4)

H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, and A. A. Kaminskii, “Characterization and laser performances of highly transparent Nd:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Femtosecond Yb3+-doped Y3(Sc0.5Al0.5)2O12 ceramic laser,” Opt. Mater. 29(10), 1283–1288 (2007).
[Crossref]

OSA TOPS Adv. Solid-State Lasers. (1)

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA TOPS Adv. Solid-State Lasers. 34, 106–111 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabrication process of multilayer Yb:YAG ceramics by non-aqueous tape casting.
Fig. 2
Fig. 2 (a) Photographs of Yb:YAG ceramics synthesized by non-aqueous tape casting method, which were both mirror-polished to 1 mm thick (Left: annealed; Right: unannealed); (b)Absorption curves of the as-synthesized Yb:YAG ceramics; (c) In-line transmittance curves of Yb:YAG ceramics.
Fig. 3
Fig. 3 SEM image of the polished surface of Yb:YAG ceramic.
Fig. 4
Fig. 4 Experimental setup for a CW Yb:YAG ceramic laser pumped by fiber-coupled laser diode in (a) plano–plano laser resonator, (b) three-mirror laser resonator. M1, cavity mirror; M2, folding mirror; OC, output coupler.
Fig. 5
Fig. 5 Average output power versus absorbed pump power of (a) plano–plano laser resonator, (b) three-mirror laser resonator with the output coupler of T = 2%, 5%, and 10%. The inset is the output spectrum.
Fig. 6
Fig. 6 Measurement of beam quality of the ourput CW laser at (a) threshold power, (b) maximum power. The inset is the typical beam pattern.
Fig. 7
Fig. 7 Tuning curve obtained with a (a) fused silica, (b) SF10, (c) SF14, and (d) SF57 intra-cavity dispersive prism for Yb:YAG ceramic .

Tables (1)

Tables Icon

Table 1 Material specification data for the organic slurry components

Metrics